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Nikita Letov 

 
Submitted to the Skolkovo Institute of Science and Technology on June 1 2018 

ABSTRACT 

Nowadays, one of system-wide approaches to facilitate a product realization process is Concurrent 
Engineering which can be applied owing to being enable to choose the best practice to improve 
product introduction process, being capable to improve cross functional integration and 
communication, and being empowered to apply a set of comprehensive methods for design analysis 
so that designers can select the most optimal design solution which is not only considering the design 
constraints, but also taking the constraints of production system, logistics and distribution into 
account. Hence, it can cover majority of problems in conceptual design phase which are generated 
due to lack of empathy between design and manufacturing. 

Data used in initial phases of product development is predominantly behavioral in nature, that 
is, a large part of this data does not refer to the geometrical parameters of the system. However, current 
PLM-systems are based on the geometrical master model concept and thus work best for the detailed 
design, where the data is mostly geometrical. Thereunder, there is still a gap between parametric and 
geometric modelling which has to be eventually filled. 

The purpose of this study was the implementing of a risk representing methodology that could 
enhance development of complex system architectures and technology planning based on 3D 
modeling. It was proposed to develop a software prototype which should consist of a parametric 
modeling tool, a geometric modeling tool, and a system modeling methodology embedded in it. It is 
proposed to fill the need in the parametric modeling tool by CEDESK – a concurrent conceptual 
design tool (Knoll and Golkar, 2016). C3D Modeler is proposed to be a geometrical modeling tool for 
the software prototype. The estimation of the technology integration risk proposed by Garg et al. 
(2017) was studied, adapted and implemented in a software prototype of the demonstrator as a way to 
represent interfaces of a system and risk they possess. 

As a result, the methodology was implanted into a software prototype which could be used for 
concurrent conceptual design of complex systems such as space systems. The software prototype 
allows to represent a 3D model of a system being developed. Impact scores, failure likelihood, and 
risk scores of interfaces between subsystems of the system are represented as a 3D design structure 
matrix (DSM) histogram. The user has an ability to retrieve information for each interface. The results 
indicate that the developed software prototype has a potential to enhance demonstrator feasibility 
assessment by representing large amounts of interfaces in 3D and to ensure a successful development 
of a product. 
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Интегрирование параллельного концептуального проектирования систем с помощью 
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Летов Никита Николаевич 

 
Представлено в Сколковский институт науки и технологий 1 июня 2018 г. 

РЕФЕРАТ 

Ныне, одним из всесистемных подходов по содействию процессу реализации изделия является 
параллельное проектирование, которое можно подобающим образом применять с целью полу-
чить выборку наилучшей практики чтобы улучшить процесс внедрения изделия; улучшить 
межфункциональные интеграцию и связь; а также иметь возможность применить исчерпыва-
ющие методы для анализа проектирования так, что проектировщики могли выбрать наиболее 
оптимальное проектировочное решение, рассматривая не только проектировочные ограниче-
ния, но и ограничения производственной системы, логистики и распределения. Следовательно, 
это может решить большинство проблем на этапе концептуального проектирования, возникаю-
щие из-за нехватки взаимосвязи между проектированием и производством. 

Данные, используемые на начальных фазах разработки изделия, преимущественно по-
веденческие, бóльшая часть этих данных не связана с геометрическими параметрами системы. 
Однако, существующие PLM-системы основаны на концепте ведущей геометрической модели, 
а следовательно, лучше всего применяются на этапе детального проектирования, где данные в 
большинстве геометрические. А значит, ныне существует разрыв между параметрическим и 
геометрическим проектированием, который должен быть преодолён. 

Цель данной работы состоит во внедрении методологии для отображения интерфейсов, 
которая могла бы усовершенствовать разработку архитектур сложных систем и технологичес-
кое планирование на основе трёхмерного моделирования. Было предложено разработать про-
граммный прототип, состоящего из инструмента параметрического моделирования, инстру-
мента геометрического моделирования и методологии для моделирования систем. В качестве 
инструмента параметрического моделирования было предложено использовать CEDESK – 
инструмент для параллельного концептуального проектирования (Knoll and Golkar, 2016). C3D 
Modeler был предложен как инструмент геометрического моделиро-вания. Оценка рисков 
интегрирования технологий (Garg et al., 2017) была изучена, адаптирована и внедрена в 
программный прототип демонстрирующей модели в качестве способа отображения 
интерфейсов системы и рисков, которые они заключают. 

Как результат, эта методология была внедрена в программный прототип, который мо-
жет использоваться для параллельного концептуального проектирования таких сложных сис-
тем, как космические системы. Программный прототип позволяет отображать 3D модель 
разрабатываемой системы. Оценка влияния, вероятность отказа и оценка рисков интерфейсов 
между подсистемами системы отображаются в виде 3D гистограммы проектировочной струк-
турной матрицы (DSM). Пользователь может получить информацию о каждом интерфейсе. Ре-
зультаты указывают на то, что разработанный программный прототип обладает потенциалом 
для усовершенствования оценки осуществимости демонстрирующей модели посредством 
отображения большого количества связей в 3D и обеспечения успешной разработки изделия. 

 
Научный руководитель:  
Ф.И.О.: Клемент Фортин 
Учёное звание, степень: ing. PhD, Машиностроение, Университет Куинс в Кингстоне, Канада 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background and context 
 

Innovation and product development are being the cornerstone of structural growth within the market 

environment nowadays. But for new product development, the stakes are high, the requirements are 

increasing and there is a new requirement of delivering more rapidly so as to beat the competition to 

the market. 

New product development is a complex endeavor, which can typically be troublesome to 

handle and difficult to check beforehand what the end result will be. There is a large uncertainty and 

sudden things happening along the way, that affect the scope and direction of a product development 

project. Therefore, these projects can often be difficult to arrange, and plans become obsolete shortly 

after they are created. 

Nowadays, in a turbulent market, developing and launching a new product into the market is 

one of competitive strategies considered by many large and small enterprises. This strategy enables a 

company to earn larger market penetration than competitors; consequently, achieving a shorter time-

to-money period and increasing the rate-of-return. Establishing this strategy demands that all 

functions within a supply chain – such as marketing, design, procurement, manufacturing, and 

distribution – to perform as a unique body of a system. The economic success of most firms depends 

on their ability to identify the needs of customers and quickly create products that meet these needs 

and can be produced at low cost. Achieving these goals is not solely a marketing problem; it is a 

product development problem involving all of these functions (Ulrich and Eppinger, 2008). Product 

development and Production development are two important processes, which are playing critical role 

in achieving this competitive capability. One of system-wide approaches to facilitate a product 

realization process is Concurrent Engineering which can be applied owing to being enable to choose 

the best practice to improve product introduction process, being capable to improve cross functional 

integration and communication, and being empowered to apply a set of comprehensive methods for 

design analysis so that designers can select the most optimal design solution which is not only 

considering the design constraints, but also taking the constraints of production system, logistics and 
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distribution into account. Hence, it can cover majority of problems in conceptual design phase, which 

are generated due to lack of empathy between design and manufacturing. 

Whereas the center of gravity is in design engineering function (Wheelwright, 1985), meaning 

that a design must satisfy various and dynamic customer requirements; the competence of 

manufacturing must be able to produce a designed product rapidly. Product realization process 

involves both product development and production development processes as two integrated and 

dependent processes for achievement of efficient development and realization process (Bellgran and 

Säfsten, 2009). Thereupon, it is essential to manage product realization process, from concept 

development to manufacturing of the commercial product, efficiently and effectively. The ultimate 

purpose of the company is achieving high degree of quality in the shortest time and with as lowest 

cost as possible. Hence, a central area is the collaboration between product developers (i.e. designers) 

and production developers (i.e. production engineers) in order to generate the fitness between product 

design and manufacturing competence. 

It is believed that the Industry 4.0 concept has potential to solve many product lifecycle issues. 

Industry 4.0 is the current trend of automation and data exchange in manufacturing technologies. It 

includes cyber-physical systems, the Internet of things and cloud computing (Hermann et al., 2016). 

Industry 4.0 creates what has been called a “digital factory”. Within the modular structured 

smart factories, cyber-physical systems monitor physical processes, produce a virtual copy of the 

physical world and make decentralized decisions. 

However, the reality still appears too far from Industry 4.0 nowadays. A way for reducing the 

complexity of systems should be developed in order to bring better understanding of a system to 

systems engineers. One of the potential ways to achieve that is to fill the gap between parametric and 

geometric modeling. 

The investigation was conducted within the Concurrent Engineering Design Laboratory 

(CEDL) at Skoltech, the Complex Systems Engineering Department (DISC) at ISAE-SUPAERO, and 

the R&T Campus of Airbus S. E. This thesis is focused on development of a software prototype that 

could potentially enhance conceptual design of complex systems. 

 
 

1.2 Research statement 
 

Based on data analysis of space projects, the data used in initial phases of product development are 

predominantly behavioral in nature, that is, a large part of this data does not refer to the geometrical 
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parameters of the system. However, current PLM-systems are based on the geometrical master model 

concept and thus work best for the detailed design, where the data is mostly geometrical. Thereunder, 

there is still a gap between parametric and geometric modelling which has to be eventually filled. 

This study is focused on applying a model-based methodology for representing interfaces and 

impacts, likelihood, and risks they possess. That could enhance development of complex system 

architectures and technology planning by filling the gap between parametric and geometric modeling 

based on 3D modeling. Since models provide the basis for rigorous management of future technology 

investments and allow for identification of synergies across multiple technology areas (Knoll and 

Golkar, 2017), it is proposed to develop a software prototype which should consist of a parametric 

modeling tool, a geometric modeling tool, and a system modeling methodology embedded in it. The 

software prototype is supposed to be used for concurrent conceptual design of complex, reliable, or 

complex and reliable systems such as space systems. The software prototype shall allow representing 

a 3D model of a system being developed and interfaces between its subsystems in 3D in such way, 

that it could enhance demonstrator feasibility assessment by representing large amounts of interfaces 

in 3D and to ensure a successful development of a product. The software prototype is proposed to be 

validated on a selected use case. 

 
 

1.3 Research questions 
 

The main goal of the study is to propose an efficient way to analyze a complex system and interfaces 

in it, including impact, likelihood, and risk they might have on conceptual design stage of a system’s 

lifecycle.  

One of the efficient methods of designing a complex system is Concurrent Engineering (CE) 

– a systematic technique for integrated product development that emphasizes the reaction to customer 

expectations. It embodies team values of co-operation, trust and sharing in that kind of way that 

decision-making is by consensus, concerning all perspectives in parallel, from the beginning of the 

product life cycle (ESA, 2012). In its conventional use, concurrent design is used to lessen 

development cost and schedule in integrated product development (Di Domizio and Gaudenzi, 2008).  

It is proposed to fill the need in a concurrent conceptual design tool by CEDESK developed 

by Knoll and Golkar (2016). CEDESK brings concurrency to conceptual design and helps to solve the 

problem of designing complex systems composed of multiple subsystems referring to different 

disciplines. Conceptual stage of life cycle is one of the most crucial ones. Costs committed on the 
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conceptual design stage of lifecycle are equal to about 70%, while only 8% are spent as illustrated in 

Figure 1.1. It is proposed to use CEDESK in the conceptual design stage of lifecycle in order to lower 

costs being spent on it. 

 
Figure 1.1 

Committed life cycle cost versus time, adapted from INCOSE (2010) 

It is proposed to use NASA Technology Readiness Levels (TRLs) represented in Figure 1.2 

as a method for technology maturity assessment of the demonstrator. TRL is, at its most basic, a 

description of the performance history of a given system, subsystem, or component relative to a set of 

levels. The TRL essentially describes the state of the art of a given technology and provides a baseline 

from which maturity is gauged and advancement defined. Even though the concept of TRL has been 

around for almost 20 years, it is not well understood and frequently misinterpreted. It is impossible to 

understand the magnitude and scope of a development program without having a clear understanding 

of the baseline technological maturity of all elements of the system (NASA, 2007). 

The estimation of the technology integration risk proposed by Garg et al. (2017) was studied, 

adapted and implemented in a software prototype of the demonstrator. 

Since the gap between parametric and geometric modelling has to be filled, it was proposed to 

integrate a solid modeling kernel with MySQL databases used in CEDESK in a software prototype 

which has a potential to enhance demonstrator feasibility assessment by representing DSM matrices 
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in 3D. For this purpose, it is proposed to use C3D Geometric Kernel (C3D Labs, 2017) and the 

principles of the development of geometric modeling systems proposed by Golovanov (2014) in order 

to address more efficient 2D and 3D modelling in developing the software. 

It is proposed to use Nano-satellite design as a use case to concretely demonstrate the 

applicability of the principles and solutions developed during the project. 

 
Figure 1.2 

Technology Readiness Levels, adapted from NASA (2007) 
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1.4 Structure of the Thesis 
 

The outline of the thesis is as follows: 

• In Chapter 2, the literature review for the study and research questions will be presented. The 

scope of the literature review, including the research areas covered, is listed. 

• In Chapter 3, the approach and methods to answer the main questions of the study will be 

introduced.  

• In Chapter 4, the results achieved during the study will be covered and the demonstration of 

the application performance will be given. 

• In Chapter 5, the results will be analyzed and discussed and the conclusions will be given, 

along with suggestions for further research. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 

A literature review was carried out in order to explain the context and reasoning behind choosing the 

papers covered in it.  

The literature review is structured as follows: 

• Section 1 of Chapter 2 will introduce literature sources relevant to understanding the problem 

definition and research questions. It consists of the Request for Information which is basically 

data from the survey of respondents from the system engineering community, as well as the 

theoretical framework of product design, product realization, and development process. 

• Section 2 of Chapter 2 will introduce several approaches to represent links and interconnection 

in systems. The description of Object Process Methodology and DSM3D are presented and 

proposed to be implemented in a software prototype. 

• Section 3 of Chapter 2 will review various applications with the purpose similar to the ones 

covered in this study. 

 

 

2.1 Theoretical framework 

 

2.1.1 Request for Information 

 

In 2010 the School of Systems and Enterprises of the Stevens Institute of Technology published a 

report with the complete set of textual responses to the questions contained in the responses to the 

SysML Request for Information (RFI) (Cloutier and Bone, 2010). The report includes over 50 

questions (including open-ended responses) that were provided by a sample of respondents from the 

system engineering community. The study was conducted in response to the OMG SysML Request 

for Information in an attempt to develop the SysML standard. The RFI is relevant to this research 

since it provides many viewpoints on Systems Engineering itself. Many of the responses covered in 
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the RFI, if taken into consideration, could be used to better understand the state of the art of systems 

modeling.  

The RFI responses were submitted via an on-line survey that was accessible from the OMG 

SysML web site. The intent of the RFI is to assist with guiding the roadmap for future evolution of 

SysML, by understanding, what is operating well, the issues, proposed solutions, and additional 

capabilities that are desired of the language. The RFI has two parts, where part I includes 22 questions 

related directly to the language, and part II includes 38 additional questions related to how SysML is 

used with model-based systems engineering (MBSE) methods, tools, training, and metrics. 

Although there is a number of MBSE approaches and methods developed, many people are 

familiar with the company specific ones as illustrated in Figure 2.1. 

 

Figure 2.1 
What modeling approach/method did you use? (Note: The following methods are mostly 
identified in the Survey of MBSE Methodologies). Based on data from Cloutier and Bone 

(2010) 
 

Figure 2.2 represents the primary purposes of the model in systems engineering according to 

the report and shows the significance of the model. 
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Figure 2.2 

What was the primary purpose of the model? Based on data from Cloutier and Bone (2010) 
 

A chart diagram provided in Figure 2.3 shows that SysML is mostly applied to the Space, 

Aircraft, and Defense types of systems, i.e. the most complex types of systems. 

 
Figure 2.3 

What type of system was SysML applied to? Based on data from Cloutier and Bone (2010) 
 

As presented in Figure 2.4, the most popular modeling tools according to the data are IBM 

Rhapsody (45.0%), NoMagic (35.0%), and Sparx Systems Enterprise Architect (18.3%). 
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Figure 2.4 

What Modeling tools were used on the project? Based on data from Cloutier and Bone (2010) 
 

As shown in Table 2.1 and Figure 2.5, people are satisfied the most with InterCAX ParaMagic 

(MagicDraw plugin) having 4.21 out of 5.0 score, although it is not the most popular modeling tool 

as could be seen in Figure 2.4. At the same time, IBM Rhapsody has a low score of 3.57 out of 5.0, 

while being the most popular modeling tool according to Figure 2.4. This implies that IBM Rhapsody 

provides some crucial for systems engineering feature, while being not as user-friendly as other 

systems modeling tool. 
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Table 2.1 
Overall value average of all diagrams. Based on data from Cloutier and Bone (2010) 

 
 Artisan 

Studio 
IBM 

Rhapsody 
InterCAX 
ParaMagic 

(MagicDraw 
Plugin) 

NoMagic 
MagicDraw 

Sparx 
Systems 

Enterprise 
Architect 

Rating 
Average 

Overall 
value 

average of 
all 

diagrams 

3.88 3.57 4.21 3.95 3.87 3.82 

 

 
Figure 2.5 

How satisfied are you with primary SysML tool used on this project? Based on data from 
Cloutier and Bone (2010) 

 
From the RFI some key modeling tools can be identified. In this part of the literature review a 

few of them will be analyzed: 

• IBM Rhapsody 

• NoMagic MagicDraw 

• Sparx Systems Enterprise Architect 
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They are selected due to their high popularity among systems engineers shown in Figure 2.4. 

All of them are based on UML and applied mostly to software development, yet some lessons 

can be learned by analyzing the tools. 

IBM Rational Rhapsody, is a modeling environment based on UML, is a visual development 

environment for systems engineers and software developers creating real-time or embedded systems 

and software. Rational Rhapsody uses graphical models to generate software applications in various 

languages, including C, C++, Ada, Java and C#. The main IBM Rational Rhapsody interface 

components are illustrated in Figure 2.6. 

 
 

Figure 2.6 
The main IBM Rational Rhapsody interface components, which include Browser (Model 
Browser tab in Eclipse), Diagram Drawing Area, Output Window and Features Window, 

adapted from IBM Knowledge Center (2016) 
 

MagicDraw is a visual UML, SysML, BPMN, and UPDM modeling tool with team 

collaboration support. Designed for business analysts, software analysts, programmers, and QA 

engineers, this dynamic and versatile development tool facilitates analysis and design of object 

oriented (OO) systems and databases. It provides the code engineering mechanism (with full round-

trip support for J2EE, C#, C++, CORBA IDL programming languages, .NET, XML Schema, WSDL), 



 

27 

additionally with database schema modeling, DDL generation and reverse engineering facilities 

(Davis, 2010). Figure 2.7 represents the user interface of the MagicDraw modeling tool. 

 
Figure 2.7 

User interface of the MagicDraw modeling tool, adapted from Charney (2005) 
 

Sparx Systems Enterprise Architect is a visual modeling and design tool based on the OMG 

UML. The platform supports: the design and construction of software systems; modeling business 

processes; and modeling industry-based domains. It is used by businesses and organizations to not 

only model the architecture of their systems, but to process the implementation of these models across 

the full application development lifecycle (Sparx Systems, 2018). The user interface of Sparx Systems 

Enterprise Architect is provided in Figure 2.8. 
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Figure 2.8 

User interface of Sparx Systems Enterprise Architect, adapted from Enterprise Architecture 
(2009) 

 

All those modeling tools are being used for development and quality assurance of large 

software projects. They are considered to be highly collaborative and agile, yet many users consider 

its user interface ‘clunky’ (TrustRadius, 2014). The interface links between subsystems intersect each 

other on an often basis, which makes the process of analyzing them complex. This implies that 

although a tool can have a great functionality, its GUI can spoil the whole experience and thus affect 

the result. As seen in Figures 2.6, 2.7, and 2.8, the UML system modeling tools have a similar user 

interface. The interface is not interactive for new users, which means that they have to spend time, 

which is crucial in conceptual design stage, on learning. 

It can also be noticed, that modeling tools are crucial for industries developing complex and 

reliable systems, such as the space industry. 
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2.1.2 Production Design and Development Process 

 

Product Development (PD) is a transformation of customers’ needs/desires or market opportunities 

into what can be sold in available markets for a logical price and reasonable production cost; “he set 

of activities beginning with the perception of the market opportunity and ending in the production, 

sale, and delivery of the product (Ulrich and Eppinger, 2008). Product Development Process (PDP) is 

a sequence of steps or activities which an enterprise employs to conceive, design, and commercialize 

a product (Ulrich and Eppinger, 2008). 

Many of the steps within a PDP are intellectual and organizational rather than physical. The 

conclusion of the product development process is the product launch meaning; when a product 

becomes available for distribution and procurement in a marketplace (Ulrich and Eppinger, 2008). 

There are two types of product development process – stage-gate and spiral processes. Each 

one of them constitutes the generic product development phases, but they differ in the arrangement of 

the sequence of phases. The stage-gate product development process is comprised of distinct stages 

or phases as well as a review or gate at the end of each phase in order to evaluate whether the previous 

phase is successfully completed. If the review fulfills the requested conditions the project proceeds to 

the next phase, otherwise the project will iterate through a former phase. Sometimes this iteration can 

be difficult and costly (Unger and Eppinger, 2009). The spiral product development process includes 

several planned iterations that span various phases of product development process. It is mainly 

implemented by software industry (Unger and Eppinger, 2009). 

The generic product development process consists of six phases represented in Table 2.2 which 

based on their chronological sequence are as follows: planning, concept development, system-level 

design, detail design, testing and refinement, and production ramp-up. 

Table 2.2 
Phases of the generic product development process, adapted from Ulrich and Eppinger (2008) 

 
Phase Description 

Planning This phase includes three overall dimensions. The basic approach to markets and 

products with respect to the competitor’s activities should be determined. This 

approach is called corporate strategy. Hence the assessment of technology 

development and the evaluation of marketing objectives should be accomplished in 

this phase. The output of this phase is named as a mission statement. 
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Table 2.2 continuation 
Phases of the generic product development process, adapted from Ulrich and Eppinger 

(2008) 
 

Phase Description 
  

Concept 

Development 

A concept is a description of the form, function, and features of the product which 

are accompanied by a set of specification, an analysis of competitive products, and 

justification of project. This phase needs more coordination among different 

functions. 

System-

level 

Design 

This phase pertains a definition of the product architecture and the decomposition of 

the product into subsystems. The architecture is usually presented as a geometric 

layout. The final assembly scheme for production system and a preliminary process 

flow diagram for the final assembly process are other outputs of system-level design 

phase. 

 

Detailed 

Design 

Two important issues are addressed in this phase; the production cost and the robust 

performance of product/process design. In addition, the complete specification of 

geometric value, materials metrics, and tolerances of all of the unique parts in the 

products as well as the identification of the all of the parts that should be provided 

by supplier are determined. The outputs of this phase are process plan for fabrication 

and assembly, tooling design, control documentation for the product. 

 

Testing and 

Refinement 

In this phase, multiple preproduction prototypes are constructed and evaluated. The 

various types of prototypes constructed through different phases of product 

development process. There are different kinds of prototypes to identify: whether the 

product satisfies the customer needs, whether it is working as designed, as well as to 

test product’s reliability and performance in order to figure out necessary 

engineering changes. 

 

Production 

ramp-up 

In the production ramp-up phase intended production system will be implemented in 

order to train workforces and identify any remaining flaws and the solution to resolve 

the problems. 
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2.1.3 Concurrent engineering 

 
Concurrent engineering (CE) is a systematic approach to integrated product development that 

emphasizes the response to customer expectations. It embodies team values of co-operation, trust and 

sharing in such a manner that decision-making is by consensus, involving all perspectives in parallel, 

from the beginning of the product lifecycle (ESA, 2012). 

Essentially, CE provides a collaborative, cooperative, collective and simultaneous engineering 

working environment. The concurrent engineering approach is based on five key elements: 

• a process 

• a multidisciplinary team 

• an integrated design model 

• a facility 

• a software infrastructure 

In its traditional use, concurrent design is used to reduce development cost and schedule in 

integrated product development (Di Dominzo, 2008). Applying concurrent engineering to a product 

lifecycle results in a time compression comparing to classical sequential (waterfall) model as sketched 

in Figure 2.9, which results in a faster start of production  

 
Figure 2.9 

Sequential Engineering vs Concurrent Engineering, adapted from Yazdani (1999) 
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2.1.4 Concurrent engineering for space systems 

 

In the space sector, it is defined that concurrent engineering at the conceptual stage is carried out in a 

very different way from the conventional design of manufacturing interface. Concurrent engineering 

is the simultaneous and integrated engineering of all design, manufacturing, and operational aspects 

of a project from the conceptual formulation of the project through project completion. It is a team-

engineering process in which all of the specialists who normally get involved in a project combine 

into a multi-disciplinary task force to carry out a project. They work together, trading ideas, and 

ensuring what they do early in the project (like major design decisions or changes) will not adversely 

affect what they do later (like "manufacturing in" quality or supporting flight operations). All 

disciplines are addressed simultaneously.  

 The use of concurrent engineering practices, coupled with the application of current state-of-

the-art three-dimensional solid modeling and analysis tools, has proven to dramatically reduce new 

project development times while maintaining or further improving quality, reliability, and safety 

(NASA JPL, 2001). 

For example, NASA Team X, a cross-functional multidisciplinary team of engineers at NASA 

JPL, utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation 

of mission concept designs. This advanced design team of experienced flight-project engineers is co-

located in the Project Design Center to complete architecture, mission, and instrument design studies 

in real time (NASA JPL, 2015). 

The Concurrent Design Facility (CDF), the European Space Agency main assessment center 

for future space missions and industrial review, uses concurrent engineering methodology to perform 

effective, fast and cheap space mission studies (ESA, 2014b). 

 
 
2.2 System Modeling 

 
Some of the UML based system modeling tools has already been covered above in Section 1.1 of 

Chapter 2. In this section other tools and methodologies that find their application in conceptual design 

phase of lifecycle will be presented. 
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2.2.1 OPM 

 

The unnecessary complexity and software orientation of UML calls for a simpler, formal, generic 

paradigm for systems development. Object Process Methodology (OPM) proposed by Dori (2011) 

satisfies the essential need for a universal modeling, engineering, and lifecycle support approach under 

condition of the inherent complexity and interdisciplinary nature of systems. OPM has a potential to 

be integrated into a next generation MBSE tool since it provides a complete overview a system with 

objects, processes, and connections it has. 

OPM advocates the integration of a system's structure and behavior is a single, graphic and 

textual model. OPM is used in companies such as Airbus for the roadmap creation process (Roussel 

et al., 2017), meaning that it is able to help grasping systems as complex as airplanes.  

In an essence, OPM is a modeling method describing which design activities to perform, what 

engineering artifacts to produce, and how they are denoted. Unification of function, structure and 

behavior in a single model, as well as bi-modal expression of the model via intuitive, yet formal 

graphics and equivalent natural language makes OPM a good candidate to any future MBSE solution, 

being the reason the section about OPM is included in this thesis. 

OPM is a comprehensive patented systems modeling, engineering, and lifecycle support 

paradigm (Dori, 2003). The main features of OPM are: 

• unification of function, structure and behavior in a single model; 

• bi-modal expression of the model via intuitive, yet formal graphics and equivalent natural 

language. 

Figure 2.10 illustrates a simple example of a system represented with OPM for Foundation 

Constructing of a house. Here, Constructor, who is physical (has a shade) performs Foundation 

Constructing, physical Raw Materials include Steel and Concrete, steel is consumed by the Steel 

Frame Forming process and by having Plan as an environment for that, etc. 
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Figure 2.10 

An OPM diagram example. Adapted from Dori (2003) 
 

 
 
2.2.2 Technology integration risks 

 

Risk estimation is a key interest for product development and technology integration programs. There 

are many decision assist tools that help project managers discover and mitigate risks in a project, but 

few explicitly take into account the outcomes of architecture on risk. A novel risk estimation 

framework was proposed by Garg et al. (2017) that consists from considerations of the system 

architecture. By way of starting with conventional project management literature, risk is described as 

a mixture of likelihood and impact.  

Technology Readiness Levels (TRLs) proposed by NASA (2007) are used as the measure for 

likelihood, and for the reason that change propagates via interfaces, measures that relate to 

connectivity are used to estimate impact. This framework became implemented with an industry 

example and the data was visualized in different formats to aid in analysis. 
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The general technique that was applied by Garg et al. (2017) is illustrated and summarized in 

Figure 2.11. In this method the technology integration risk of each component 𝑖 is estimated using a 

common risk metric – the product of likelihood and impact as seen in Equation 1 (Project Management 

Institute, 2008). 

𝑅𝑖𝑠𝑘% = 𝐿% ∙ 𝐼%										(1) 

𝐿% is the likelihood that the element technology needs an alternation to fulfil its function. This 

is estimated through the usage of TRLs, that have been proven to be proper estimators of uncertainty 

in the technology integration process (United States Government Accountability Office, 2007). 

𝐼% is the severity of impact if the element is forced to alternate. The general architecture and 

the element interfaces must be examined specifically to estimate the impact through the context of 

change propagation. 

 
 

Figure 2.11 
Summary of risk calculation method, adapted from Garg et al. (2017) 

The technique was implemented with an industry use-case within Analog Devices Inc. Data 

obtained from Analog Devices have been used to build a view of the system architecture and develop 

a network representation of the system as illustrated in steps (1) and (2) from Figure 2.9. Assoon as 
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all of the data has been gathered, impact and likelihood vectors had been calculated as in steps (3), (4) 

and (5) of Figure 2.11 to obtain final risk scores (step 6). The inputs and final risk calculation are 

shown in Figure 2.12 with bars in each cell to symbolize the magnitudes. 

 
 

Figure 2.12 
Vector representation of the components and their scores, adapted from Garg et al. (2017) 

 
The data is graphed on a scatter plot in Figure 2.13, with the two-axis corresponding to 

likelihood and severity to better visualize the risk scores. 

 
 

Figure 2.13 
Two-axis view of likelihood and impact, adapted from Garg et al. (2017) 

 
In order to preserve information about interfaces, the risk score information was combined 

with a Design Structure Matrix (DSM) view of the system (Eppinger and Browning, 2012). The 
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Design Structure Matrix (DSM) is a data exchange model as illustrated in the example in Figure 2.14. 

In DSMs information flows are easier to capture than work flows, and inputs are simplier to capture 

than outputs (de Weck, 2012).  

 
 

Figure 2.14 
An example of a DSM matrix of interfaces. Interpretation: task D requires information from 
tasks E, F, and L; task B transfers information to tasks C, F, G, J, and K, adapted from de 

Weck (2012) 
 

In order to use the DSM view with the proposed technique, each off-diagonal mark inside the 

matrix is selected to represent a risk score composed of the two interfacing components. The 

calculation is performed according to Equation 2: 

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑟𝑖𝑠𝑘% = max8𝐿%, 𝐿:; ∙ max8𝐼%, 𝐼:;										 (2) 

Where 𝐿% and 𝐿: represent the likelihood scores for the two interfacing components; 𝐼% and 𝐼: 

represent the impact scores for each element(Garg et al., 2017). Figure 2.15 allows to see the results 

of this analysis. The component-level risk calculations are left as a vector in the "risk" column as an 

additional reference. 
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Figure 2.15 
DSM view of the system risk, adapted from Garg et al. (2017) 

 
 
 
2.2.3 DSMV and DSM3D 
 

Many companies that struggle with product variety and configuration management issues turn to a 

module-based design approach. Although this approach is well-known to be efficient for managing 

variety of a product family, current methods do not enable designers to handle both modularity and 

variety within a product family. The Design Structure Matrix (DSM) has been widely used to identify 

modules within a product, but its use to identify modules across a family of products has been limited. 

In this context two more tools were proposed by Alizon et al. (2007) based on an extension of the 

basic DSM to manage variety of an entire product family. The Variety Design Structure Matrix, 

DSMV, handles variety of the product family and 3D Design Structure Matrix, DSM3D, enables visual 

analysis of interfaces across the entire product family. These two tools, combined into a single 

approach, enable analysis of the product family at many levels — family product, module, and 

interfaces — to better specify modules and interfaces across all of the products in the family. A case 

study involving a family of Kodak single-use cameras is used to demonstrate the application of these 

new DSMs and accompanying cross-module and cross-interface analyses. This approach can be 

applied during detailed studies as well as in the early stages of the design process. 
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Kodak, a manufacturer of photographic equipment and systems, successfully led the market 

of single-use cameras by producing a product family that addressed multiple market segments. Kodak 

offered a wide range of products that included combinations of key features such as waterproof, 

panoramic format, flash, and high definition. Product platforming enables companies to cut costs 

while offering tailored products, yet it also brings the challenge of managing variety within the family.  

The DSM application proposed by Alizon et al. (2007) demonstrates two DSM techniques to 

identify modules across a product family: the DSM variety (DSMV) and the three-dimensional DSM 

(DSM3D). Using these two DSM techniques, one is able to study families of products, modules, and 

interfaces. 

The model works in two main stages using two original DSM techniques: DSMV and DSM3D. 

The DSMV, shown in Figure 2.16, uses a static, binary, product architecture DSM to specify the 

modules in each product containing components that have either common, variant, or unique 

interfaces. The process is repeated for all the products of the family and then all these DSMV-s are 

stacked to obtain the DSM3D. The DSM3D, shown in Figure 2.17, is a three-dimensional DSM 

gathering all products of the family and highlighting the differences. 

  
Figure 2.16 

Clustered DSMV of Kodak Fun Saver camera with a legend of modules and interfaces, adapted 
from Alizon et al. (2007) 
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Figure 2.17 
Two views of the camera family DSM3D, showing several Kodak single-use camera DSM-s 

overlapping in 3D, adapted from Alizon et al. (2007) 
 

 
 
2.3 Software Review 

 
This section of the literature review will cover various applications already implemented for systems 

engineering applications with purposes similar to the ones proposed in the study. 

 

2.3.1 Virtual Satellite 

 

In October 2008, the German Aerospace Center (DLR) inaugurated the new Institute for Space 

Systems located in Bremen, Germany. This concentrates the competences in space engineering, 

enabling the DLR to build space systems in-house. Furthermore, a Concurrent Engineering Facility 

(CEF) was established according to ESA’s Concurrent Design Facility (CDF) (Bandecchi et al., 2000) 

to offer the very effective approach of concurrent systems engineering. Additionally, the need for a 

tool supported process for the simulation-based space system development based on a modern and 

flexible software infrastructure was identified. The Virtual Satellite project aims at the definition of 

this process and the implementation of the needed infrastructure (Schumann et al., 2008). 
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There are general issues of inter-domain communication and understanding of the Virtual 

Satellite tool. It is believed that a tool which uses CEDESK as a parametric modeling tool could have 

the potential to overcome those issues, since CEDESK can interact with domain-specific models and 

tools. There is also an issue of understanding: before an expert starts using Virtual Satellite, he or she 

has to spend some time training since the GUI does not provide intuitive interaction. 

Figure 2.18 illustrates the user interface of VirSat and Figure 2.19 describes a system 

architecture of Virtual Satellite, which visualize the system model and a connection to a virtual reality 

environment. The system proposed has high potential since it could improve the inter-domain 

communication, facilitate feasible design phase and provide more detailed and concrete models for 

the next design phases (Tsykunova, 2016). 

The VirSat Client operates with documents called Visualization Models. These documents are 

being transferred to the VR environment of VirSat throughout the process of satellite design, providing 

a tool for both 3D Visualization and 3D Interaction. 

VirSat has certain disadvantages: it has no integration of third-party tools in the architecture 

and is not an open-source software. 

 
 

Figure 2.18 
3D Visualization and interaction of the system model in the software Virtual Satellite, adapted 

from Deshmukh et al. (2015) 
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Figure 2.19 
Architecture of Virtual Satellite exchanging system model information within the Concurrent 

Engineering Facility as well as data interaction in a VR environment, adapted from 
Deshmukh et al. (2015) 
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2.3.2 IDM 

 

The French National Centre for Space Studies has its own concurrent design facility called Centre 

d’Ingénierie Concourante (CIC). For the build-up of system budgets and the exchange of parameters 

between disciplines, CIC makes good use of the Integrated Design Model (IDM) tool provided by the 

Concurrent Design Facility of ESA and resulting from close cooperation between both agencies 

(Bousquet et al., 2005). 

Figure 2.20 represents the IDM architecture. The IDM is the central system budget tool 

originally developed by ESTEC and based on Excel® spreadsheets. All discipline specific tools 

gravitate around IDM with the Data Exchange process being a core of it. 

 
 

Figure 2.20 
IDM architecture, adapted from Bousquet et al. (2005), courtesy of ESA 
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Table 2.3 lists the disciplines generally involved in a study within CIC, and their principal 

design tools. The name of the tool is underlined when a direct link has or should be established with 

the IDM. 

Table 2.3 
CIC’s discipline and tool list, adapted from Bousquet et al. (2005) 

 
System IDM 

AOCS Matlab 

CAD design Catia V5 

Comms Access Database 

Data Handling Obade 

Mission analysist & simulation Opale, STK, Excel 

Power Saber 

Propulsion Excel database 

Risk Failcab, Cabtree, Supercab, Gencab 

Structures Patran, Nastran 

Thermal Thermica 

 
Since IDM is based on Excel, there might be some interconnection issues relevant to all Excel-

based software products. There are many reports on Excel being crashed, frozen, corrupting files, etc. 

Most of those problems require the user to switch to Excel and to resolve the issues manually 

(Microsoft Support, 2016). IDM has no integration with third party tools and is not open-source.  

 

 

2.3.3 Cameo Systems Modeler 

It was decided to review Cameo Systems Modeler as a cross-platform collaborative MBSE 

environment, which provides smart, robust, and intuitive tools to define, track, and visualize all 

aspects of systems in the most standard-compliant SysML models and diagrams. The environment 

enables systems engineers to:  Run engineering analysis for design decisions evaluation and 

requirements verification Continuously check model consistency Track design progress with metrics 

System models can be managed in remote repositories, stored as standard XMI files, or published to 

documents, images, and web views to address different stakeholder concerns (NoMagic). 
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The architecture of Cameo Systems Modeler provided in Figure 2.21 shows that the tool is 

capable of bringing many other tools around it. Cameo Systems Modeler uses many tools of the 

MagicDraw origin, yet it has many third-party components in it. 

 

 
 

Figure 2.21 
Architecture of Cameo Systems Modeler, adapted from NoMagic (2017) 

 
NoMagic provides many tools of their own design, but still depends a lot on external software. 

There is a disadvantage in this: the more external tools are being used, the more licenses should be 

provided and more version control needed (Spangelo et al., 2013).  
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2.3.4 CEDESK 

 

As was covered above, one of the efficient approaches to design a complex system is concurrent 

engineering. It is proposed to find a tool for concurrent conceptual design. One of such tools is 

CEDESK developed by Knoll and Golkar (2016). 

CEDESK is an open-source tool to facilitate co-located collaborative model-based conceptual 

design of complex engineering systems. This type of tool is also known as data exchange for 

concurrent engineering studies. Multidisciplinary design teams can use CEDESK to facilitate their 

work together by building shared parametric models of their system of interest (Knoll and Golkar, 

2016). 

CEDESK aims to bring concurrency to conceptual design and to solve the problem of 

designing complex systems composed by multiple subsystems referring to different disciplines. Costs 

committed on the conceptual design stage of lifecycle are equal to 70%, while only 8% are spent as 

illustrated in Figure 1.1. 

CEDESK mostly focuses on its primary function: exchange parametric model information 

between discipline experts. However, visualization of basic three-dimensional geometry is not 

embedded into CEDESK. 

CEDESK allows multiple users to work concurrently on the design of a system, while 

distributing design authority over subsystems among discipline experts. Figure 2.22 shows the user 

interface used by discipline experts to collaborate on a system model. The structure sub-window 

represents the systems as a tree model. The parameters sub-window lists all parameters in a selected 

subsystem. It is also possible to see all linkages for each parameter and subsystem, making it a good 

tool for system representation. 
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Figure 2.22 

Starting screen of CEDESK 
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CHAPTER 3 
 

APPROACH 
 
 
It is proposed to develop a tool that could represent interfaces in a 3D DSM view of impact, likelihood, 

and risk scores using 3D Modeler. Interfaces are proposed to be inherited from MySQL databases 

used in CEDESK, which makes the representation to be based on a parametric model of a system. 

C3D Modeler is capable of representing geometry of a system being developed. It is believed that the 

proposed software prototype has the potential to become a next generation MBSE platform, capable 

of representing a geometrical model of the system in 3D with supporting tools orbiting the model. 

Figure 3.1 represents the structure proposed for the next generation MBSE software which could 

eventually arise from the results of the study. It is proposed that this software should be represented 

as a Concurrent Conceptual Design and Demonstrator Assessment Platform consisting of a geometric, 

parametric, and system modeling tool. In the proposed software prototype, it was suggested to 

implement CEDESK as a parametric modeling tool, C3D Modeler as a geometric modeling tool, and 

DSM methodology proposed by Garg et al. (2017) as a way to represent a system and interfaces inside 

of it. Other tools could include many other tools to facilitate concurrent conceptual design, such as 

Microsoft Excel. However, it must be noted that a variety of tools could bring problems with 

versioning and licensing. This kind of platform could potentially become in the next generation MBSE 

software since the proposed tool is supposed to be able to represent the system being developed with 

modeling tools orbiting it. 

 
Figure 3.1 

Proposed next generation MBSE platform structure 
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Figure 3.2 represents the approach used in this thesis project. Firstly, a tool for parametric 

modeling has to be chosen. It is proposed to fill the need in a concurrent conceptual design tool by 

CEDESK developed by Knoll and Golkar (2016). CEDESK is a tool, which is aimed to support the 

concurrent conceptual phase and can most effectively work with behavioral data. 

Data used in initial phases of product development is predominantly behavioral in nature, that 

is, a large part of this data does not refer to the geometrical parameters of the system. However, current 

product lifecycle management (PLM) systems are based on the geometrical master model concept and 

thus work best for the detailed design, where the data are mostly geometric. Thereunder, there is still 

a gap between parametric and geometric modelling which has to be eventually filled. 

Thus, a tool for geometric modeling is required. As a way to fill the gap between parametric 

and geometric modelling, it is proposed to integrate the C3D solid modeling kernel with MySQL 

databases used in CEDESK in a software prototype which has a potential to enhance demonstrator 

feasibility assessment by representing DSM matrices in 3D. 

 

  
Figure 3.2 

The approach proposed to achieve the target of this thesis project 
 
 

3.1 Parametric modeling tool 
 

It is proposed to fill the need in concurrent conceptual design tool by CEDESK developed by Knoll 

and Golkar (2016) which was briefly covered in Section 5.4 of Chapter 2. 
The architecture shown in Figure 3.3 has been implemented for the European Space Agency 

(ESA) in the Open Concurrent Design Tool (OCDT) (ESA, 2014a), which use is limited to ESA 

member states. The commercial version of it called Concurrent Design Platform (CDP) (Fijneman 

and Matthyssen, 2010). For a similar purpose, the German Aerospace Agency (DLR) developed 

Virtual Satellite (VirSat) (Schaus et al., 2010), and the Jet Propulsion Laboratory developed Open 
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Model Based Engineering Environment (OpenMBEE) (NASA JPL, 2016) (see Table 3.1 for a 

comparison of commonly used tools for conceptual design studies in space agencies). 

 
 

Figure 3.3 
Tool architecture – a central data exchange connecting all domain models, adapted from 

Bandiccheri et al. (2000) 
 

Table 3.1 
Comparison of tools for conceptual design in aerospace, adapted from Knoll and Golkar 

(2016) 
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3.2 Geometric modeling tool 
 

Since geometrical representation is needed to represent a model in the center of a system and interfaces 

between subsystems, it is proposed to use C3D Modeler as a tool for it. C3D Modeler can be used to 

create stand-alone applications which is crucial for size-reduction of any future MBSE software. It 

has the potential to be a base for a VR tool as well. The objects, methods, and algorithms used by the 

C3D modeling kit are described by Golovanov (2014). 

C3D Labs is a company aimed for developing and promoting its geometrical kernel. Being the 

most popular geometrical modelling kernel in Russia, C3D Toolkit is gaining customers worldwide 

as well. Customers of C3D Labs are CAD/CAM/CAE developers and various institutions, such as the 

Skolkovo Institute of Science and Technology. Today, C3D Labs is a part of ASCON group and a 

resident of the Skolkovo Innovation Center. 

It was proposed to implement the C3D Kernel and C3D Vision in order to develop a web-

based application for representation and assessment of a demonstrator. The following tasks are 

accomplished: 

1. Building the software architecture. 

2. Development of a framework with the C++ programming language on programming level. 

3. Development of a methodology for demonstrator assessment. 

4. Implementation of the developed methodology in a software prototype using the C3D 

geometrical kernel. 

In C3D Toolkit, a geometrical object describes the form of the modeled object. Geometric 

objects include curves, surfaces, bodies as well as topological objects that describe geometric 

properties that don't depend on quantitative features and describe permanently interconnected points 

in 3D space. There are two-dimensional and three-dimensional geometric objects. Two-dimensional 

objects are used to work in definition areas of surface parameters, as well to work with planes of local 

3D coordinate systems. 

The C3D geometric kernel operates with geometric model objects shown in Figure 3.4 (C3D 

Labs, 2017). Such variety of operable geometric objects implies in the high potential for MBSE 

software as well. For instance, MbPlaneInstance can be used to represent a three-dimensional plot, 

diagram, or DSM. 
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Figure 3.4 
Geometric model object operated by C3D geometric kernel, adapted from C3D Labs (2017) 
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CHAPTER 4 

RESULTS 
 

 

4.1 Proposed software prototype architecture 

Firstly, it was decided to develop a software architecture, in order to build the bridge between design 

requirements and technical software requirements by understanding use cases, and then finding ways 

to implement those use cases in the software. The goal of an architecture is to identify the requirements 

that affect the structure of the application (NASA, 2014). 

It is possible that a user might need to work with multiple documents, so it was chosen to use 

the multi-document interface (MDI) structure as a base of the application. All documents are proposed 

to be accessed within a single framework on the top level of application architecture as illustrated in 

Figure 4.1.  

 
 

Figure 4.1 
The top level of the architecture 

 
Figure 4.2 represents the second level of architecture, which is important to make links inside 

the application clearer. Inside the architecture, there is a DLL with a GUI and Template Plugin. The 

GUI is responsible for HMI, while the Template Plugin allows creation of new documents with 

different types. The GUI, being adapted from the C3D testing application, consists of the Framework 

with various tools such as menu, statusbar, toolbar, etc. The Template Plugin is controlled by the 

Framework and able to store and change data in the document. It also interacts back with the 
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Framework through the Interface. The Interface sends signals to the Registrator Plugins, which sends 

signals with the Framework to the application itself. The Python script interacts with the Document 

through the Template Plugin and retrieves data from MySQL databases. The reason for implementing 

the Python script instead of coding purely in C++ is covered in Section 2.4 of this chapter. 

 
 

Figure 4.2 
The second level of the architecture 

 
The block diagram provided in Figure 4.3 shows the interfaces between the Window and the 

Manager. The Model, which basically is the data used in projects, may be represented as the 

Document, which could be seen in the Window by the user. The Manager Editor sends signals to the 

General Manager in order to make changes in the Document. 
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Figure 4.3 
Block diagram for representing the Manager Editor interface with the Window 

 
 
 

4.2 Development environment 
 

4.2.1 Microsoft Visual Studio 

 

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used 

to develop computer programs for Microsoft Windows, as well as web sites, web apps, web services 

and mobile apps. Visual Studio uses Microsoft software development platforms such as Windows 

API, Windows Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight. 

It can produce both native code and managed code (Webster, 2017). 

C3D kernel is written in C++ and Microsoft Visual Studio was chosen since it allows use the 

C++ programming language in a professional way.   
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4.2.2 CMake 

 

CMake is an extensible, open-source tool that constructs the build procedure in an operating system 

and in a compiler-independent way. Unlike many cross-platform systems, CMake is designed fo use 

in conjunction with the native build environment, which is Microsoft Visual Studio in this case. 

Simple configuration documents located in each source directory (called CMakeLists.txt documents) 

are used to generate standard build documents (e.g., makefiles on Unix and projects/workspaces in 

Windows MSVC) which are used in the usual way. CMake can generate a native build environment 

that will compile source code, create libraries, generate wrappers and build executables in arbitrary 

combinations. CMake supports in-place and out-of-place builds and may therefore support multiple 

builds from a single source tree. CMake additionaly supports static and dynamic library builds. 

Another function of CMake is in generating a cache document that is designed for use with a graphical 

editor. For instanse, when CMake runs, it locates documents, libraries, and executables, and can 

encounter optional build folders. This information is accumulated into the cache, which may be 

modified by the user before the generation of the native build documents (CMake, 2017). 

CMake is designed to assist with complex directory hierarchies and applications dependent on 

numerous libraries. For instance, CMake aids projects consisting of more than one toolkits (i.e., 

libraries), in which each toolkit could contain numerous directories, and the application relies upon 

on the toolkits plus extra code. CMake also can manage conditions in which executables ought to be 

built with the intention to generate code which is then compiled and linked right into a final 

application. Since CMake is open source, and has a simple, extensible design, CMake may be 

extended as required to support new features. The build procedure is managed through creating one 

or more CMakeLists.txt documents in each folder (which includes subfolders) that make up a project. 

Each CMakeLists.txt includes one or more commands. Each command has the form COMMAND 

(args…) in which COMMAND is the name of the command, and args is a white-space separated list 

of arguments. CMake offers many pre-defined commands and presents an interface for including user-

defined commands. Furthermore, the advanced user can upload other makefile generators for a 

specific compiler/OS combination.  

Figure 4.4 shows the user interface of CMake used in the development of the software 

prototype, where the source code is a folder with C++ and header files used to build the solution; 

binaries are the resulting software prototype which is the result of compiling the source code. The 

CMake GUI has a table for user-defined variables which have a name and a value. The connection to 
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the C3D libraries are done through this variable interface, as well some general configuration 

properties of the program. 

 
 

Figure 4.4 
User interface of CMake 

 
 
 

4.2.3 SourceTree 

 

Agile methods grew out of the real-life project experiences of leading software professionals who had 

experienced the challenges and limitations of traditional waterfall development on project after 

project. The approach promoted by agile development is in direct response to the issue associated with 

traditional software development both in terms of overall philosophy as well as specific processes 

(McLaughlin, 2005). 

Agile development, in its simplest form, offers a lightweight framework for helping teams, 

given a constantly evolving functional and technical landscape, maintain a focus on the rapid delivery 
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of business value (i.e., bang for the buck). As a result of this focus, the benefits of agile software 

development are that organizations are capable of significantly reducing the overall risk associated 

with software development. 

In particular, agile development accelerates the delivery of initial business value, and through 

a process of continuous planning and feedback, is able to ensure that value continues to be maximized 

throughout the development process. As a result of this iterative planning and feedback loop, teams 

are able to continuously align the delivered software with desired business needs, easily adapting to 

changing requirements throughout the process. By measuring and evaluating status based on the 

undeniable truth of working, testing software, much more accurate visibility into the actual progress 

of projects is available. Finally, as a result of following an agile process, at the conclusion of a project 

is a software system that much better addresses the business and customer needs (VersionOne, 2005). 

Figure 4.5 displays the differences between agile and waterfall development processes. By 

delivering working, tested, deployable software on an incremental basis, agile development delivers 

increased value, visibility, and adaptability much earlier in the life cycle, significantly reducing project 

risk. 

 
 

Figure 4.5 
Agile development value proposition, adapted from VersionOne (2005) 

 
It was decided to use SourceTree as a tool providing agile development to the study. 

SourceTree is a free Git client for Windows and Mac for programmers working with Git in 

development. It provides a visual interface between a user and Git avoiding a command line. The 
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reason for choosing SourceTree as a Git client for the study is in the desire to make the study agile by 

branch management, working copies, and branch history (Donnelly, 2015). 

Figure 4.6 shows the user interface of SourceTree used in the development of the software 

prototype with a graph of commits with branches and commit descriptions. Each commit has a date 

stamp, author, commit ID, its parents. On the bottom right-hand side of the user interface, there is a 

code viewer which allows a user to see and analyze changes in each file in the commit. Deleted rows 

of code are highlighted with red color and has a ‘minus’ sign at the beginning of each deleted row, 

while added rows of code are highlighted with green color and has a ‘plus’ sign at the beginning of 

each added row. 

 

 
 

Figure 4.6 
User interface of SourceTree 
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4.2.4 MySQL Connector/Python 

 

CEDESK operates with MySQL databases and is written in the Java programming languages while 

C3D Modeler is written in the C++ programming language. Since it was decided to develop a software 

prototype in the scope of this thesis, there has to be an interface between them. MySQL provides 

standards-based drivers for JDBC, ODBC, and .Net enabling developers to build database applications 

in their language of choice. In addition, a native C library allows developers to embed MySQL directly 

into their applications (MySQL, 2018). MySQL developed MySQL Connector drivers for the 

following several programming languages and environments: 

• ADO.NET Driver for MySQL (Connector/NET) 

• ODBC Driver for MySQL (Connector/ODBC) 

• JDBC Driver for MySQL (Connector/J) 

• Node.js Driver for MySQL (Connector/Node.js)  

• Python Driver for MySQL (Connector/Python)  

• C++ Driver for MySQL (Connector/C++)  

• C Driver for MySQL (Connector/C)  

• C API for MySQL (mysqlclient) 

At first, from this list the C++ Driver for MySQL appeared to be the most appropriate option 

to be implemented in the software prototype since C3D Modeler is written in C++. However, a 

preliminary study discovered, that the C++ Driver requires a significant amount of external 

dependencies other than the C++ standard library and developing the software prototype with the C++ 

Driver would take a significant amount of time to adjust and implement it. 

From the list of the drivers above, the Python Driver for MySQL stands out as one the few 

drivers without any external dependencies other than the standard required library – the standard 

Python library. Moreover, Python has a large community of developers, resulting in a lot of 

documentation available online. Thus, it was decided to develop a Python script which would be called 

by the program whenever a connection to a MySQL database requires to be established.  
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4.3 Use case 

 

In order to analyze the performance of the developed application, it is important to perform a use case 

analysis. For this purpose, a dataset from a feasibility study of a project supported by the CEDESK 

application: the LaserNaut satellite project. This representative data of a concurrent conceptual design 

study, was generated by students and researchers from Skoltech participating in Satellite Engineering 

projects. The satellite design included the following conventional subsystems: Attitude Determination 

and Control System (ADCS), Communication, Power, Orbit, Thermal, and Structure as well as an 

Optical payload. Input and output data of each subsystem were extracted from the CEDESK database 

for the analysis (Fortin et al., 2017). A solid model of the satellite made in SolidWorks is presented 

in Figure 4.7 and Figure 4.8. 

 
 

Figure 4.7 
3U CubeSat – Tyvak Endeavor, adapted from Knoll et al. (2016). 
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Figure 4.8 
3U CubeSat – Tyvak Endeavor without the side panels and the solar panels, adapted from 

Knoll et al. (2016) 
 
 
 

4.4 Application  
 

4.4.1 Implementation 

 

It was suggested develop the prototype application using the C3D geometrical modeling kernel and 

basing on the architecture presented in Section 1 of Chapter 4. Appendix A of this thesis includes 

information and an example relevant to using C3D Kernel in the study. 

 After the software and all its sub-functions are specified, the implementation phase starts. Here 

coding is a straightforward process when the specifications and designs are well made. Coding process 

usually includes some code reviews, mainly intended for analyzing that the code is a well commented 

and follows the good programming practices.  

As covered in Section 2.4 of Chapter 4, it was decided to implement the Python script for 

establishing the connection between the software and MySQL databases. Appendix B of this thesis 

includes the code for the Python script used in the software prototype with relevant comments and an 

example of data retrieved. 
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For the implementation, a new folder in a comfortable working position was created to contain 

all the source and built code of the software prototype. 

It was decided to use the 2017 version of Microsoft Visual Studio as the development 

environment. The C3D Modeler version was chosen to correspond to the development environment. 

Include, Debug, and Release files of the application were adapted from the testing application 

of C3D Modeler. Source files were adapted and expanded with new functionality relevant for the 

study. 

CMake files were adapted and expanded with new functionality relevant for the study. 

Appendix C of this thesis includes the code of one of the few CMake files used for the development 

of the software prototype. Considering that the software prototype is located in directory 

\SOFTWARE_PROTOTYPE, the directories for the source code and for the built binaries are 

\SOFTWARE_PROTOTYPE\Source and \SOFTWARE_PROTOTYPE\Build respectively. After 

that the project is configured using CMake. The generator for this project is specified to be Microsoft 

Visual Studio 2017. After that, the project files are generated using CMake and can be opened directly 

from CMake. 

In the project, there have been developed various expansions of the original C3D code that 

were relevant for the study. Appendix D of this thesis includes excerpts the C++ code used for 3D 

DSM plotting using C3D Modeler. 

  

 

4.4.2 Testing 

 

As the result of the study, the software prototype was made. The initial screen is shown in 

Figure 4.9. It has a toolbar with quite common functions, such as creation of a new file, showing all 

windows, etc. View window can show one or more sub-windows since the MDI structure was chosen. 

It was decided to build this application on top of the test application provided by C3D Labs. Still, the 

main idea of this application is to represent the possibility to represent data from MySQL databases 

in form of DSM matrices. It is not supposed to be a commercial software product ready to be sold and 

implemented. 
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Figure 4.9 

Initial screen of the developed software prototype. 
 

In order to provide the user with an access to the developed features of the software prototype, 

some new elements of the GUI were developed. As illustrated in Figure 4.10 the File menu has two 

specific buttons: New MySQL connection and New risk assessment. Clicking on New MySQL 

connection launches the process of connecting to a MySQL database using user credentials for it. 

Those credentials consist of a regular set of parameters needed to access a MySQL database – a 

username, a password, a host name, and a database name (Figure 4.11, a – d). 

 

Figure 4.10 
Part of the File menu of the developed software prototype 
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(a)                                                      (b) 

    

(c)                                                                       (d)  

Figure 4.11 
Windows for entering user credentials. (a) Window for entering a username. (b) Window for 

entering a password. (c) Window for entering a host name. (d) Window for entering a 
database name. 

 

After performing the MySQL access procedures, the software prototype performs access the 

Python script which accesses a MySQL database using the entered credentials and retrieves data from 

the database. An example SQL query for retrieving data consisting of parameter dependencies in the 

LaserNaut cubesat is provided below: 

 
CREATE OR REPLACE VIEW parameter_dependencies AS  
SELECT 
y.id AS system_id,  
y.`name` AS system_name,  
s1.id AS target_subsystem_id,  
s1.`name` AS target_subsystem_name,  
p1.id AS target_parameter_id,  
p1.`name` AS target_parameter_name,  
p1.`value` AS target_parameter_value,  
u.`name` AS target_parameter_unit,  
p2.id AS source_parameter_id,  
p2.`name` AS source_parameter_name,  
s2.id AS source_subsystem_id,  
s2.`name` AS source_subsystem_name  
FROM parametermodel p1  
JOIN unit u ON p1.unit_id = u.id  
JOIN subsystemmodel s1 ON p1.parent_id = s1.id  
JOIN systemmodel y ON s1.parent_id = y.id  
JOIN parametermodel p2 ON p2.id = p1.valueLink_id  
JOIN subsystemmodel s2 ON s2.id = p2.parent_id  
WHERE p1.valueLink_id IS NOT NULL; 
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SELECT 
`target_subsystem_id`, 
`target_subsystem_name`, 
`source_subsystem_id`, 
`source_subsystem_name`, 
COUNT(source_parameter_id) AS linked_parameters 
FROM parameter_dependencies 
WHERE system_name = \"LaserNaut\" 
GROUP BY `target_subsystem_name` , `source_subsystem_name`; 

 

The query above returns a set of data that can be interpreted as provided in Table 4.1. The 

number of linked parameters between subsystems can be interpreted as the impact score used in the 

method proposed by Garg et al. (2017) which was discussed above in Section 2.2 of Chapter 2 with 

the literature review. 

Table 4.1 
Example dataset used for the case study 

# Target Subsystem Source Subsystem Linked 

parameters ID Name ID Name 

1 17840 Bio Payload 17838 Mission + 

Programmatics 

1 

2 17840 Bio Payload 17842 Power + Thermal 2 

3 17840 Bio Payload 17841 Structure 7 

4 17845 OBDH 17840 Bio Payload 1 

5 17845 OBDH 17846 Optical Comms 1 

6 17846 Optical Comms 17843 AOCS 1 

7 17846 Optical Comms 17877 Orbit 2 

8 17842 Power + Thermal 17846 Optical Comms 2 

9 17842 Power + Thermal 17877 Orbit 4 

10 17844 RF Comms 14845 OBDH 1 

11 17844 RF Comms 17846 Optical Comms 1 

12 17844 RF Comms 17877 Orbit 2 
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Table 4.1 continuation 
Example dataset used for the case study 

 
# Target Subsystem Source Subsystem Linked 

parameters ID Name ID Name 

13 17841 Structure 17840 Bio Payload 4 

14 17841 Structure 17838 Mission + 

Programmatics 

1 

15 17841 Structure 17846 Optical Comms 4 

16 17841 Structure 17877 Orbit 3 

17 17841 Structure 17842 Power + Thermal 1 

 

After importing all the data, the program uses it to represent a DSM on the screen as a three-

dimensional histogram. This 3D histogram uses data and creates a 3D bar graph of the number of 

linked parameters between subsystems in a two-dimensional grid. This 3D histogram is considered to 

be a 2D array of integer amount linked parameters as shown in Table 4.2. Figure 4.12 illustrates the 

3D DSM view of the impact scores plotted by using the data from Table 4.2. 

Table 4.2 
DSM view of the impact scores (or linked parameters) between 9 subsystems 

Subsystem # 1 2 3 4 5 6 7 8 9 

Mission + 
Programmatics 1  1 1       

Bio Payload 2   4    1   

Structure 3  7        

Power + 
Thermal 4  2 1       

AOCS 5        1  

RF Comms 6          

OBDH 7      1    

Optical Comms 8   4 2  1 1   

Orbit 9   3 4  2  2  
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Figure 4.12 
3D DSM view of the impact scores (or linked parameters) between 9 subsystems 

 

User can perform a New risk assessment from the File menu after performing all required 

manipulations with the impact scores. The result of this operation is a new DSM view of the interfaces 

between subsystems, now with the risk scores calculated by the method proposed by Garg et al. (2017) 

which was discussed above in Section 2.2 of Chapter 2 of the literature review and can be described 

by Equation 2: 

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑟𝑖𝑠𝑘% = max8𝐿%, 𝐿:; ∙ max8𝐼%, 𝐼:;										 (2) 

The risk scores are being normalized afterwards to the score of 100 being corresponding to the 

highest interface risk. This new 3D histogram is considered to be a 2D array of the risk scores as 

shown in Table 4.3. Figure 4.13 illustrates the 3D DSM view of the risk scores plotted by using the 

data from Table 4.3. In this particular example, all the technologies of the subsystems are considered 

to have TRL 9. 

A potential user has a possibility to retrieve information about each one of the interfaces by 

clicking on it in the DSM view with right mouse button. For instance, if the user decides to retrieve 

information from an interface between Bio Payload being the target subsystem and Structure being 

the source subsystem, they could click with a right mouse button on it and a sub-window with the 

information appears as shown in Figure 4.14. This information includes names of the target and source 

subsystems with their IDs in brackets, its impact score, TRL, and risk score. 
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Table 4.3 
DSM view of the risk scores 

Subsystem # 1 2 3 4 5 6 7 8 9 

Mission + 
Programmatics 1  14 14       

Bio Payload 2   57    14   

Structure 3  100        

Power + 
Thermal 4  29 14       

AOCS 5        14  

RF Comms 6          

OBDH 7      14    

Optical Comms 8   57  29  14 14   

Orbit 9   43 57  29  29  

 

 

  

Figure 4.13 
3D DSM view of the risk scores between 9 subsystems. The arrow here highlights one of the 

interfaces for the case study 
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Figure 4.14 
Information about the interface highlighted in Figure 4.11 in a separate sub-window 

Since it was decided to implement an MDI architecture of the software prototype, user can 

open several windows with DSM views of impact scores and risk scores. C3D Converter uses the 

following formats to exchange geometric model data with other systems: STEP, IGES, SAT (ACIS), 

X_T, X_B (Parasolid), STL, VRML, and JT. STEP, IGES, SAT, X_T, X_B formats transmit the 

boundary representation of the geometric model. STL and VRML formats transmit the polygonal 

representation of the geometric model. JT format transmits the hybrid representation (both) of the 

geometric model. STEP format supports transmit of product and manufacturing information (PMI) 

(C3D Labs, 2017). Therefore, the user can also open a 3D model of the systems. A user interface in 

this case appears as illustrated in Figure 4.15. 

 
Figure 4.15 

User interface of the developed software prototype showing the MDI structure implemented in 
it  
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Chapter 5 
 

FUTURE WORK AND CONCLUSIONS 
 
 
5.1  Avenues of future work 

 
In this section, further research ideas and rooms for improvement will be presented, some of which 

had to be excluded from this thesis. 

Firstly, it would be interesting to see further case studies for the software prototype developed. 

It would be interesting to further develop the software prototype to enhance concurrent 

conceptual design process by using C3D Kernel and C3D Vision features.  

It was suggested by one of the R&T team members at Airbus, that the frustration and issues 

the concurrent design team faced, where things that people do not have appropriate and convenient 

tools to visualize a system with all the parameters included in it. Thus, it would be interesting to 

develop a new interface and methodology for data visualization. 

Since DSM matrices become larger and more complex, it would be interesting to implement 

big data analysis and data sciences in order to better identify, capture, and manage information. 

It would be interesting to implement DSMV and DSM3D for in the software prototype, since they 

provide a way to embrace a whole family of products. 

It would be interesting to make a full real-time integration of CEDESK with C3D Modeler. 

The difference in the programming languages between them is an obstacle to achieving that, yet it is 

feasible in a longer perspective. 

It would be interesting to switch to VR to make using DSMs in the conceptual design stage of 

life cycle more interactive. 

It would be interesting to implement the software prototype in a web-based tool/add-on in 

order to make it available all over the globe. 

Figure 5.1 represents a concept of a Next Generation MBSE platform that could emerge from 

the developed software prototype. This concept has a 3D model of a demonstrator model under 

development with CEDESK, Opcat, DSM viewer and a plot viewer orbiting it. It would be interesting 

to see this platform operational. 
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Figure 5.1 
A concept of a Next Generation MBSE platform 

 
The developed software prototype allows modelling and evaluation of a demonstrator by 

representing a 3D model of a system being developed and interfaces in it as 3D DSM matrices. 

Implementing the OPM methodology proposed by Dori (2003) and covered in Section 2.1 of Chapter 

2 could allow a systems designer to even better analyze systems with large amounts of interfaces on 

their conceptual design stage. This could be crucial for enhancing the development of a software 

prototype of Digital Factory – a new generation of adaptable factory engineered with knowledge-

based engineering systems, which is believed to play a significant role in establishing of the 4th 

Industrial Revolution as a cyber-physical system. The Digital Factory concept could result to 

extensively configuration, model, simulate, assess and evaluate items, procedures and system before 

another industrial facility is constructed or any alteration is really completed on a current framework, 

keeping in mind the end goal to enhance quality and lessen the time (Canetta et al, 2011). 

 

5.2   Conclusions 

 

The main goal of the research was to study, adapt, and implement some of the current DSM techniques 

in a software prototype to allow a concurrent engineering design team to represent data from MySQL 
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databases from CEDESK in a view of three-dimensional DSM matrices. A case study was conducted 

using the developed software prototype. 

The software prototype is not supposed to be a commercial software product ready to be sold 

and implemented yet, although there might be a potential for that which has to be identified. 

The delimitations of the study are that only one main use-case is studied in detail. The results 

might therefore not be universally applicable to other use-cases. The timeframe of the study was 9 

months, resulting in a great amount of data and ideas arising, but not all aspects and perspectives could 

be accommodated within the scope of the master thesis study. 

As a result, it is believed that adding the third dimension to DSM has the potential to allow a 

systems engineer to comprehensively analyze interfaces in the system, especially in our world where 

systems become more and more complex. Moreover, a concurrent conceptual design team using the 

software prototype can experience a more interactive process by developing a parametric model of a 

system using the CEDESK interface and being able to see a 3D geometrical model of results of their 

cooperative work, along with DSMs to have a better comprehension of system interfaces and risks in 

them. It is believed that the developed software prototype has the potential to become the next 

generation MBSE platform, capable of representing a geometrical model of the system in 3D with 

supporting tools orbiting the model. 
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Appendix A: An example of constructing an extrusion body with C3D 
Modeler 
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As described in Section 5 of Chapter 3, it is proposed to use C3D Modeler as a tool for geometrical 

representation. In this Appendix an example of an extrusion operation used in the software prototype 

is provided for general understanding of the way the API of C3D Modeler works. 

 In the example bellow, construction of an extrusion body is performed by a C++ function 

ExtrusionSolid.  

 

ExtrusionSolid (const MbSweptData & sweptData, 

            const MbVector3D & direction, 

            const MbSolid * solid1, 

            const MbSolid * solid2, 

            bool checkIntersection, 

            ExtrusionValues & params, 

            const MbSNameMaker & names, 

            PArray<MbSNameMaker> & cnames, 

            MbSolid *& result)   

 

 

The function takes the following input parameters: 

§ sweptData is the data for a curve generator, 

§ direction is the extrusion direction, 

§ solid1 is used when option «To next object in forward direction is selected, 

§ solid2 is used when option «To next object in forward direction is selected, 

§ checkIntersection is a flag indicating that it is necessary to merge solid1 and solid2 

bodies subject to checking the intersection, 

§ params are construction parameters, 

§ names are face names 

§ cnames are names of curve generator segments 

Method output parameter is a constructed body result. If successful, the method returns 

rt_Success, otherwise it returns an error code from MbResultType listing. 

It could be noticed that the core objects used in C3D Modeler and represented in Figure 3.4 

are basically written to be new types of variables. Figure A.1 represents the data used for construction, 

as well as the scheme for inheriting the parameters of constructed extrusion body to better visualize 



 

81 

the linkages between different types of variable in this example. This greatly improves the software 

development process using C3D Modeler as it brings simplicity in working with it. 

 
Figure A.1 

Data used for construction of an extrusion body and the scheme of inheriting the parameters 
of constructed extrusion body, adapted from C3D Labs (2017) 

 

A two-dimensional contour and flat surface (MbPlane) that can be used for an extrusion are 

shown in Figure A.2. Figure A.3 represents a thin-walled closed body that was constructed by 

extrusion based on specified contour parameters. Each contour segment has a corresponding face of 

the body, its name is taken from the corresponding element of сnames[0] name generator embedded 

into C3D Modeler. 

 

 
Figure A.2 

A two-dimensional contour and flat surface that can be used for an extrusion, adapted from 
C3D Labs (2017) 
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Figure A.3 

A thin-walled closed body that was constructed by extrusion based on specified contour 
parameters, adapted from C3D Labs (2017) 
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Appendix B: The Python script used for establishing a secure 
connection between an application working on C++ and MySQL 

databases 
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As described in Section 2.4 of Chapter 4, it is proposed to use the Python Driver for MySQL for 

establishing a secure connection between the software prototype working on C++ and MySQL 

databases operated by CEDESK. 

 Below is the code of the Python script with the MySQLConnector/C++ library included. 

Relevant comments are included. 
 
# !/usr/bin/python 
# version.py - Fetch and display the MySQL database server version. 
 
# File name: MySQL_connection.py 
# Author: Nikita Letov 
# Date created: 03/12/2018 
# Date last modified: 04/04/2018 
# Python Version: 2.7.14 
 
 
# Import MySQL connector modules. 
from mysql.connector import MySQLConnection, Error 
# Import Pandas library. 
import pandas as pd 
# Import the CSV hanling library. 
import csv 
from collections import defaultdict 
# Import the library for addressing Windows Command Line. 
import optparse 
 
# Importing user credentials for accessing a MySQL database. 
parser = optparse.OptionParser('usage%prog' + 
                               '-username <username>' + 
                               '-password <pass> ' + 
                               '-host <host> ' + 
                               '-database <database> ') 
 
parser.add_option('-u', dest = 'username', help = 'The Username for 
authentication.') 
parser.add_option('-p', dest = 'password', help = 'The password for 
authentication.') 
parser.add_option('-a', dest = 'host',     help = 'The host to interact 
with.') 
parser.add_option('-d', dest = 'database', help = 'The database to run') 
 
(options,args) = parser.parse_args() 
 
 
def query_with_fetchone(): 
    try: 
        # Open a database connection. 
        ccnx = MySQLConnection() 
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        ccnx.connect(user     = options.username, 
                     password = options.password, 
                     host     = options.host, 
                     database = options.database) 
        # Prepare a cursor object using cursor() method. 
        cursor = ccnx.cursor() 
         
        # Execute the SQL query using execute() method.   
        cursor.execute ("CREATE OR REPLACE VIEW parameter_dependencies AS " 
                        "SELECT " 
                        "y.id AS system_id, " 
                        "y.`name` AS system_name, " 
                        "s1.id AS target_subsystem_id, " 
                        "s1.`name` AS target_subsystem_name, " 
                        "p1.id AS target_parameter_id, " 
                        "p1.`name` AS target_parameter_name, " 
                        "p1.`value` AS target_parameter_value, " 
                        "u.`name` AS target_parameter_unit, " 
                        "p2.id AS source_parameter_id, " 
                        "p2.`name` AS source_parameter_name, " 
                        "s2.id AS source_subsystem_id, " 
                        "s2.`name` AS source_subsystem_name " 
                        "FROM " 
                        "parametermodel p1 " 
                        "JOIN " 
                        "unit u ON p1.unit_id = u.id " 
                        "JOIN " 
                        "subsystemmodel s1 ON p1.parent_id = s1.id " 
                        "JOIN " 
                        "systemmodel y ON s1.parent_id = y.id " 
                        "JOIN " 
                        "parametermodel p2 ON p2.id = p1.valueLink_id " 
                        "JOIN " 
                        "subsystemmodel s2 ON s2.id = p2.parent_id " 
                        "WHERE " 
                        "p1.valueLink_id IS NOT NULL; ") 
        cursor.execute ("SELECT " 
                        "`target_subsystem_id`, " 
                        "`target_subsystem_name`, " 
                        "`source_subsystem_id`, " 
                        "`source_subsystem_name`, " 
                        "COUNT(source_parameter_id) AS linked_parameters " 
                        "FROM " 
                        "parameter_dependencies " 
                        "WHERE " 
                        "system_name = \"LaserNaut\" " 
                        "GROUP BY `target_subsystem_name` , 
`source_subsystem_name`; ") 
 
        # Allocating lists with imported values. 
        target_subsystem_id = [] 
        target_subsystem_name = [] 
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        source_subsystem_id = [] 
        source_subsystem_name = [] 
        linked_parameters = [] 
         
        # Adding imported values in the lists. 
        row = cursor.fetchone() 
        while row is not None: 
            target_subsystem_id += [row[0]] 
            target_subsystem_name += [str([row[1]])[13:-3]] 
            source_subsystem_id += [row[2]] 
            source_subsystem_name += [str([row[3]])[13:-3]] 
            linked_parameters += [row[4]] 
            row = cursor.fetchone() 
         
        # Creating a dataframe with the data. 
        d = {'Target subsystem id'     :   target_subsystem_id, 
             'Target subsystem name'   :   target_subsystem_name, 
             'Source subsystem id'     :   source_subsystem_id, 
             'Source subsystem name'   :   source_subsystem_name, 
             'Linked parameters'       :   linked_parameters} 
 
        df = pd.DataFrame(data = d) 
        df = df[['Target subsystem id', 
                 'Target subsystem name', 
                 'Source subsystem id', 
                 'Source subsystem name', 
                 'Linked parameters']] 
         
        filename = 'dsm_data.csv' 
        df.to_csv(filename) 
        print(df) 
         
         
    except Error as e: 
        print(e) 
         
    finally: 
        # Closing the connection. 
        cursor.close() 
        ccnx.close() 
         
     
if __name__ == '__main__': 
    query_with_fetchone() 
 

 

As a result of running the Python above from the C++ application, the software prototype gets data 

represented in Table B.1 to operate with. 
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Table B.1 
Data imported from an example MySQL database by running the Python script from the C++ 

software prototype 
Subsystem 

ID 

Subsystem 

name 

Parameter 

ID 
Parameter name 

Parameter 

value 
Parameter unit 

17838 
Mission + 

Programmatics 
17839 mission lifetime 0.5 year 

17877 Orbit 17913 earth radius 6378 Kilometer 

17877 Orbit 17914 orbit altitude 600 Kilometer 

17877 Orbit 17915 inclination 97.7924 Degree 

17877 Orbit 17916 SMA 6878.14 Kilometer 

17843 AOCS 17984 Pointing Accuracy 0.1 Degree 

17843 AOCS 17985 Peak power consumption 5.46 watt 

17843 AOCS 17986 Mass 0.865 kilogram 

17846 Optical Comms 17987 Pointing accuracy 0.1 Degree 

17846 Optical Comms 17988 Power consumption 5.064 watt 

17846 Optical Comms 17989 Mass 0.3 kilogram 

17846 Optical Comms 18000 Orbit 600 Kilometer 

17846 Optical Comms 18008 earth radius 6378 Kilometer 

17838 
Mission + 

Programmatics 
18052 Deployment velocity 2 

metre per 

second 

17838 
Mission + 

Programmatics 
18053 Min delay between 2 launches 1 minute 

17841 Structure 18171 Max Payload Size X 0.093 Meter 

17841 Structure 18172 Max Payload Size Y 0.093 Meter 

17841 Structure 18173 Max Payload Size Z 0.2 Meter 

17841 Structure 18174 Max Payload Mass 2.5 Kilogram 

17841 Structure 18175 Momentum of Inertia X 0.02733417 
Kilogram Meter 

Squared 

17841 Structure 18176 Momentum of Inertia Y 0.01500083 
Kilogram Meter 

Squared 

17841 Structure 18177 Momentum of Inertia Z 0.03666667 
Kilogram Meter 

Squared 

17841 Structure 18192 Launch Vibration Amplitude 7.84 
Meter Per 

Second Squared 

17841 

 

Structure 

 

18193 

 

Launch Vibration Frequency 

 

100 

 

Hertz 
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Table B.1 continuation 
Data imported from an example MySQL database by running the Python script from the 

C++ software prototype 
Subsystem 

ID 

Subsystem 

name 

Parameter 

ID 
Parameter name 

Parameter 

value 
Parameter unit 

17841 Structure 18194 Launch Acceleration 42.14 
Meter Per 

Second Squared 

17840 Bio Payload 18216 Capsule size X 0.093 Millimeter 

17840 Bio Payload 18217 Capsule size Y 0.093 Millimeter 

17840 Bio Payload 18218 Capsule size Z 0.093 Millimeter 

17840 Bio Payload 18219 Capsule Mass 0.9 Kilogram 

17840 Bio Payload 18220 Average Power 12 watt 

17840 Bio Payload 18221 Bio Experiment Data Rate 0.05 
kilobit per 

second 

17840 Bio Payload 18222 Bio Experiment Duration 28.105 day 

17846 Optical Comms 18247 Experiment Telemetry generation 0.1 
kilobit per 

second 

17846 Optical Comms 18248 
Required radio satellite interlink 

datarate 
0 

kilobit per 

second 

17842 
Power + 

Thermal 
18263 Bus Voltage 11.1 Volt 

17842 
Power + 

Thermal 
18278 EPS Dimensions X 75 Millimeter 

17842 
Power + 

Thermal 
18279 EPS Dimensions Y 70 Millimeter 

17842 
Power + 

Thermal 
18280 EPS DImensions Z 45 Millimeter 

17841 Structure 18311 Aerodynamic Disturbances 1.81E-05 Newton 

17841 Structure 18384 Inclination 97.7924 Degree 

17841 Structure 18385 Orbit Altitude 600 Kilometer 

17841 Structure 18386 Satellite Velocity 7612.608 
Meter Per 

Second 

17841 Structure 18387 Mission Lifetime 0.5 year 

17841 Structure 18388 Bio Payload Size X 0.093 Millimeter 

17841 Structure 18389 Bio Payload Size Y 0.093 Millimeter 

17841 Structure 18390 Bio Payload Size Z 0.093 Millimeter 

17841 Structure 18391 Laser Payload Size X 95 millimetre 
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Table B.1 continuation 
Data imported from an example MySQL database by running the Python script from the 

C++ software prototype 
Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

17841 Structure 18392 Laser Payload Size Y 95 millimetre 

17841 Structure 18393 Laser Payload Size Z 85 millimetre 

17841 Structure 18433 Bio Payload Mass 0.9 Kilogram 

17841 Structure 18441 Laser Payload Mass 0.3 kilogram 

17844 RF Comms 18468 Power consumption (RX mode) 0.13 watt 

17844 RF Comms 18469 
Average access time for Moscow 

per day 
2055.15755 second 

17844 RF Comms 18470 Power consumption (TX mode) 3.75 watt 

17844 RF Comms 18471 Transceiver mass 100 Gram 

17844 RF Comms 18476 UHF antenna mass 50 Gram 

17844 RF Comms 18483 Time in TX mode (per day) 10080 Second 

17845 OBDH 18491 Mass 80 Gram 

17845 OBDH 18492 power consumption 1 watt 

17844 RF Comms 18502 orbit altitude 600 Kilometer 

17877 Orbit 18509 orbit velocity 7612.608 
Meter Per 

Second 

17877 Orbit 18514 
average access time to ground 

station 
2055.15755 second 

17842 
Power + 

Thermal 
18551 Orbit altitude 600 Kilometer 

17842 
Power + 

Thermal 
18552 Daylight duration 3673.658 second 

17842 
Power + 

Thermal 
18553 Orbit period 5801.23 second 

17877 Orbit 18569 orbit period 5801.23 second 

17877 Orbit 18570 sunlight time 3673.658 second 

17842 
Power + 

Thermal 
18578 Orbit inclination 97.7924 Degree 

17846 Optical Comms 18642 
Portion of the orbit dedicated to 

experiment 
10 percent 

17846 Optical Comms 18643 Dimensions Z 85 millimetre 

17846 Optical Comms 18671 Dimensions X 95 millimetre 
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Table B.1 continuation 
Data imported from an example MySQL database by running the Python script from the 

C++ software prototype 
Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

17846 Optical Comms 18672 Dimensions Y 95 millimetre 

17844 RF Comms 18725 
Portion of time dedicated to laser 

experiment 
10 percent 

17844 RF Comms 18762 
Maximum distance between 

satellites 
841.519556 kilometre 

17840 Bio Payload 18775 Max Payload size X 0.093 Meter 

17840 Bio Payload 18776 Max Payload size Y 0.093 Meter 

17840 Bio Payload 18777 Max Payload size Z 0.2 Meter 

17840 Bio Payload 18778 Total Payload mass 2.5 Kilogram 

17840 Bio Payload 18798 Inner Satellite T Sunside 0.15009647 Degree Celsius 

17840 Bio Payload 18799 Inner satellite T darside -11.22916 Degree Celsius 

17840 Bio Payload 18800 Launch Vibrations Amplitude 7.84 
Meter Per 

Second Squared 

17840 Bio Payload 18801 Launch Vibrations Frequency 100 Hertz 

17840 Bio Payload 18802 Launch acceleration 42.14 
Meter Per 

Second Squared 

17840 Bio Payload 18805 Mission lifetime 0.5 year 

17877 Orbit 18918 computed lifetime 6.4 year 

17838 
Mission + 

Programmatics 
19073 

Starting distance between 

satellites 
50 kilometre 

17842 
Power + 

Thermal 
19084 Power System Mass 0.63783 Kilogram 

17841 Structure 19127 Integrated Bus Mass 1.5 Kilogram 

17842 
Power + 

Thermal 
19176 Solar Cells Mass 0.18783 Kilogram 

17841 Structure 19186 Solar Arrays Mass 0.18783 Kilogram 

17842 
Power + 

Thermal 
19257 Temperature Zenith Wall 0.15009647 Degree Celsius 

17842 
Power + 

Thermal 
19262 Temperature Nadir Wall -11.22916 Degree Celsius 

17843 AOCS 19298 Average power consumption 1 Watt 
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Table B.1 continuation 
Data imported from an example MySQL database by running the Python script from the 

C++ software prototype 
Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

Subsystem 

ID 
Subsystem ID 

17846 Optical Comms 19515 LaserTransmitter_diameter 10 Millimeter 

17846 Optical Comms 19516 LaserTrasmitter_powerDissipation 2.1252 Watt 

17842 
Power + 

Thermal 
19552 Laser Base diameter 10 Millimeter 

17842 
Power + 

Thermal 
19567 Laser Power Disipation 2.1252 Watt 

17845 OBDH 19623 
Amount of data to transmit per 

day 
1.64794922 Megabyte 

17844 RF Comms 19632 
Amount of data to transmit per 

day 
1.64794922 Megabyte 

17845 OBDH 19633 Bio payload data rate 0.05 
kilobit per 

second 

17845 OBDH 19634 Laser payload data rate 0.1 
kilobit per 

second 

17842 
Power + 

Thermal 
19680 Disipator cilinder height 90.4010843 Millimeter 
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Appendix C: Code of the main CMake file used in the study 
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As described in Section 2.2 of Chapter 4, it is proposed to CMake for building of the software 

prototype. 

 In this project, CMake files were adapted and expanded with new functionality relevant for 

the study.  

Below is the code for the main CMake file used to build the whole application. Relevant 

comments are included.  

 
 
# Minimum CMake version required for building 
CMAKE_MINIMUM_REQUIRED(VERSION 3.2.2) 
PROJECT(Test) 
SET(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/..) 
 
# Libraries     
SET(Math_MATH_LIBRARY 
    optimized ${CMAKE_BINARY_DIR}/../Release/c3d.lib 
    debug ${CMAKE_BINARY_DIR}/../Debug/c3d.lib) 
 
SET(Math_LIBRARIES ${Math_MATH_LIBRARY} CACHE FILEPATH "" FORCE) 
 
# Checking if PC runs 32-bit version 
IF(CMAKE_HOST_WIN32) 
  SET(Test_OUTPUT "Test") 
ENDIF() 
 
# Unicode build 
OPTION(MathTest_USING_UNICODE "Enable Unicode support" ON) 
 
# Math names are not included by default 
OPTION(MathTest_QT "Use Qt Library" OFF) 
IF(MathTest_QT) 
  FIND_PACKAGE( Qt5Core ) 
  FIND_PACKAGE( Qt5Gui ) 
  FIND_PACKAGE( Qt5OpenGL ) 
ENDIF() 
 
# Source C++ files for creation of geometrical objects. 
SET(Create_SRC 
  ./Create/test_constraint.cpp 
  ./Create/test_arc.cpp 
  ./Create/test_assembly.cpp 
  ./Create/test_contour.cpp 
  ./Create/test_curve.cpp 
  ./Create/test_plane.h 
  ./Create/test_line.cpp 
  ./Create/test_multiline.cpp 
  ./Create/test_multithreading.cpp 
  ./Create/test_point.cpp 
  ./Create/test_curve3d.cpp 
  ./Create/test_sheet.cpp 
  ./Create/test_shell.cpp 
  ./Create/test_map.cpp 



 

94 

  ./Create/test_solid.cpp 
  ./Create/test_space.h 
  ./Create/test_surface_.cpp 
  ./Create/test_point3d.cpp 
  ./Create/test_surface.cpp 
  ./Create/test_user.cpp 
  ) 
SOURCE_GROUP(Create FILES ${Create_SRC}) 
 
# Source C++ files for editing geometrical objects.  
SET(Edit_SRC 
  ./Edit/test_edit_contour.cpp 
  ./Edit/test_edit_curve.cpp 
  ./Edit/test_edit_plane.h 
  ./Edit/test_edit_multiline.cpp 
  ./Edit/test_edit_curve3d.cpp 
  ./Edit/test_edit_map.cpp 
  ./Edit/test_edit_solid.cpp 
  ./Edit/test_edit_space.cpp 
  ./Edit/test_edit_space.h 
  ./Edit/test_edit_surface.cpp 
  ) 
SOURCE_GROUP(Edit FILES ${Edit_SRC}) 
 
# Source C++ files of the GUI.  
SET(Main_SRC 
  ./Main/test_draw.cpp 
  ./Main/test_draw.h 
  ./Main/test_frame.h 
  ./Main/test_frame1.cpp 
  ./Main/test_frame2.cpp 
  ./Main/test_frame3.cpp 
  ./Main/test_service.cpp 
  ./Main/test_service.h 
  ./Main/test_variables.cpp 
  ./Main/test_variables.h 
  ) 
SOURCE_GROUP(Main FILES ${Main_SRC}) 
 
# Source C++ files for performing geometrical calculations.  
SET(Make_SRC 
  ./Make/test_computation.cpp 
  ./Make/test_computation.h 
  ./Make/test_converter.cpp 
  ./Make/test_converter.h 
  ./Make/test_mates.cpp 
  ./Make/test_mates.h 
  ./Make/test_rendering.cpp 
  ./Make/test_rendering.h 
  ./Make/test_rendering_.cpp 
  ./Make/test_rendering_context.cpp 
  ./Make/test_rendering_context.h 
  ) 
SOURCE_GROUP(Make FILES ${Make_SRC}) 
 
# Source C++ files for managing processes in the application.  
SET(Manager_SRC 
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  ./Manager/test_comanager.h 
  ./Manager/test_comanager.cpp 
  ./Manager/test_gr_draw.cpp 
  ./Manager/test_gr_draw.h 
  ./Manager/test_manager.cpp 
  ./Manager/test_manager.h 
  ./Manager/test_property.cpp 
  ./Manager/test_property.h 
  ./Manager/test_property_title.h 
  ./Manager/test_style.h 
  ./Manager/test_temporal_plane.cpp 
  ./Manager/test_temporal_plane.h 
  ./Manager/test_tree.cpp 
  ./Manager/test_tree.h 
  ./Manager/test_tree_filter.cpp 
  ./Manager/test_tree_filter.h 
  ./Manager/test_temporal.cpp 
  ./Manager/test_temporal.h 
  ./Manager/test_window.cpp 
  ./Manager/test_window.h 
  ./Manager/test_window_add.cpp 
  ./Manager/test_window_find.cpp 
  ./Manager/test_window_move.cpp 
  ) 
SOURCE_GROUP(Manager FILES ${Manager_SRC}) 
 
# Source C++ files for the sample control.  
SET(Samples_SRC 
  ./Samples/test_samples.h 
  ./Samples/test_sample_attributes.cpp 
  ./Samples/test_sample_user_attributes.h 
  ./Samples/test_sample_user_attributes.cpp 
  ./Samples/test_sample_solid_elementary.cpp 
  ./Samples/test_sample_solid_splitting.cpp 
  ./Samples/test_sample_parametric_sketch.cpp 
  ./Samples/test_sample_read_write_constraints.cpp 
  ./Samples/test_sample_spinning_block.cpp 
  ./Samples/test_sample_wireframe.cpp 
  ) 
SOURCE_GROUP(Samples FILES ${Samples_SRC}) 
 
# Optional source C++ files for building using the Qt libraries.  
 
IF(MathTest_QT) 
  SET(QtTest_SRC 
    ./Qt/test_main.cpp 
    ./Qt/test_main_window.h 
    ./Qt/test_main_window.cpp 
    ./Qt/test_child_window.h 
    ./Qt/test_child_window.cpp 
    ./Qt/test_property_dialogs.h 
    ./Qt/test_property_dialogs.cpp 
    ./Qt/test_main_dialogs.h 
    ./Qt/test_main_dialogs.cpp 
  ) 
  SOURCE_GROUP(QtTest FILES ${QtTest_SRC}) 
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# MOC files.  
 
  SET(MOC_Files  
    ./Qt/test_main_window.h 
    ./Qt/test_child_window.h 
    ./Qt/test_property_dialogs.h 
    ./Qt/test_main_dialogs.h 
  ) 
 
  QT5_WRAP_CPP(MOC_Gui  
    ${MOC_Files} 
  ) 
   
# RCC files.  
 
  SET(RCC_Files  
    ./Qt/test.qrc 
  ) 
 
 QT5_ADD_RESOURCES(RCC_Gui ${RCC_Files}) 
 INCLUDE_DIRECTORIES(${QT_USE_FILE}) 
 
# Optional source C++ files for building without using the Qt libraries.  
 
ELSE() 
 
  SET(WinTest_SRC 
    ./Win/test.cpp 
    ./Win/test.h 
    ./Win/test.rc 
    ./Win/test_dialogs.cpp 
    ./Win/test_frame.cpp 
    ./Win/test_info.h 
    ./Win/test_prompt.h 
    ./Win/test_set_filter.cpp 
    ./Win/test_set_property.cpp 
    ./Win/test_set_tree.cpp 
    ./Win/test_std_afx.cpp 
    ./Win/test_std_afx.h 
    ./Win/test_window_graphic.cpp 
  ) 
  SOURCE_GROUP(WinTest FILES ${WinTest_SRC}) 
 
ENDIF() 
 
# Source sub-directories.  
INCLUDE_DIRECTORIES(${CMAKE_BINARY_DIR}/../Include 
      ${Test_SOURCE_DIR}/Create 
      ${Test_SOURCE_DIR}/Edit 
      ${Test_SOURCE_DIR}/Main 
      ${Test_SOURCE_DIR}/Make 
      ${Test_SOURCE_DIR}/Manager 
      ${Test_SOURCE_DIR}/Samples 
      ${Test_SOURCE_DIR}/Win 
      ${Test_SOURCE_DIR}/Qt 
)  
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ADD_DEFINITIONS(  
  -D__TEST_ONLY__ 
  ) 
 
IF(MSVC) 
IF(MathTest_USING_UNICODE) 
  ADD_DEFINITIONS(  
    -DUNICODE 
    -D_UNICODE 
    ) 
ENDIF(MathTest_USING_UNICODE) 
ELSE() 
  ADD_DEFINITIONS( 
    -std=c++0x 
    ) 
ENDIF() 
 
IF(MathTest_QT) 
  ADD_DEFINITIONS(  
    -D__USE_QT__ 
    ) 
ENDIF() 
   
IF(MathTest_WITH_VLD) 
  ADD_DEFINITIONS( 
    -DENABLE_VLD 
    ) 
ENDIF() 
   
IF(MSVC) 
  SET(CMAKE_CXX_FLAGS_DEBUG   "${CMAKE_CXX_FLAGS_DEBUG_INIT} -D_DEBUG -D_DRAWGI /Zi 
/W4") 
  SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE_INIT} -D_SECURE_SCL=0 /W4") 
ELSE() 
  SET(CMAKE_CXX_FLAGS_DEBUG  "${CMAKE_CXX_FLAGS_DEBUG_INIT} -D_DEBUG -D_DRAWGI -Wno-
deprecated-declarations") 
  SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE_INIT} -D_SECURE_SCL=0 -Wno-
deprecated-declarations") 
ENDIF() 
 
IF(MathTest_QT) 
  IF(MSVC) 
    SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS_INIT} /ENTRY:mainCRTStartup") 
  ENDIF() 
 
  ADD_EXECUTABLE(${Test_OUTPUT} WIN32 
    ${Create_SRC} 
    ${Edit_SRC} 
    ${Main_SRC} 
    ${Make_SRC} 
    ${Manager_SRC} 
    ${Samples_SRC} 
    ${QtTest_SRC} 
    ${MOC_Gui} 
    ${RCC_Gui} 
    ) 
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ELSE() 
  ADD_EXECUTABLE(${Test_OUTPUT} WIN32 
    ${Create_SRC} 
    ${Edit_SRC} 
    ${Main_SRC} 
    ${Make_SRC} 
    ${Manager_SRC} 
    ${Samples_SRC} 
    ${Win_SRC} 
    ${WinTest_SRC} 
    ) 
ENDIF() 
 
IF(MathTest_QT) 
  QT5_USE_MODULES( ${Test_OUTPUT} Core Gui OpenGL ) 
ENDIF() 
 
IF(MSVC) 
  TARGET_LINK_LIBRARIES(${Test_OUTPUT} 
    ${Math_LIBRARIES} 
    ${VLD_LIBRARIES} 
    ${QT_LIBRARIES} 
    opengl32 
    glu32 
    comctl32 
    ) 
ELSE() 
  TARGET_LINK_LIBRARIES(${Test_OUTPUT} 
    ${Math_LIBRARIES} 
    ${VLD_LIBRARIES} 
    ${QT_LIBRARIES} 
    GL 
    GLU 
    ) 
ENDIF() 
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Appendix D: Excerpts of the code used for 3D DSM plotting 
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In this appendix some of the functions participating in building 3D DSM diagrams are presented.  

Not all aspects and functions of the code could be presented here because of its complexity 

and size. However, functions for establishing a MySQL connection through the Python script, for 

building a simple cuboid that can be used for building a 3D histogram, and for the actual 3D DSM 

representation have been excerpted as ones that allow users to see the result of their work. 

 
//------------------------------------------------------------------------------------ 
// Establish MySQL connection 
// --- 
void SQLconnection() 
{ 
 TCHAR username[256]; 
 TCHAR password[256]; 
 TCHAR host[256]; 
 TCHAR database[256]; 
  
 // Accessing the Python script 
 std::string filepath = "C:/Users/nikita.letov/Documents/MySQL_test_app/Build/"; 
 std::string filename = "MySQL_connection.py"; 
 std::string command = "cd " + filepath + " && python " + filename; 
  
 if (GetString(IDS_ENTER_SQL_USERNAME, _T(""), username, STRINGLENGTH)) {} 
 if (GetString(IDS_ENTER_SQL_PASSWORD, _T(""), password, STRINGLENGTH)) {} 
 if (GetString(IDS_ENTER_SQL_HOST,     _T(""), host,     STRINGLENGTH)) {} 
 if (GetString(IDS_ENTER_SQL_DATABASE, _T(""), database, STRINGLENGTH)) {} 
 
 SetWaitCursor(true); 
 
 command += " -u "; 
 command += TcharToString(username); 
 command += " -p "; 
 command += TcharToString(password); 
 command += " -a "; 
 command += TcharToString(host); 
 command += " -d "; 
 command += TcharToString(database); 
 
 FILE* in = _popen(command.c_str(), "r"); 
 _pclose(in); 
 
 // Building 3D DSM 
 BuildDSM3D(); 
  
 // Refreshing the screen 
 TestVariables::viewManager->RefreshModel(); 
 
 filename = "dsm_data.csv"; 
 command = "cd " + filepath + " && start " + filename; 
 
 SetWaitCursor(false); 
} 
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//------------------------------------------------------------------------------------ 
// Asses risks 
// --- 
void RiskAssessment() 
{ 
 SetWaitCursor(true); 
 
 BuildDSMrisk(); 
 
 // Refreshing the screen 
 TestVariables::viewManager->RefreshModel(); 
 
 SetWaitCursor(false); 
} 
 
//------------------------------------------------------------------------------------ 
// Build a cuboid by 3 points base and height. 
// --- 
void buildCubeBy3Point(MbCartPoint3D p1, MbCartPoint3D p2, MbCartPoint3D p3, double h, 
uint32 color) 
{ 
 
 // Allocating an array of points. 
 MbCartPoint3D p[4]; 
 p[0] = p1; 
 p[1] = p2; 
 p[2] = p3; 
 
 // Type of the solid: block (cuboid). 
 ElementaryShellType type = et_Block; 
 
 
 SArray<MbCartPoint3D> points(4, 1); 
 points.Add(p[0]); 
 points.Add(p[1]); 
 points.Add(p[2]); 
 
 MbSNameMaker names(503, MbSNameMaker::i_SideNone, 0); 
 
 
 // Allocating memory for a solid. 
 MbSolid * solid = NULL; 
 
 // Avoiding the heght to be less than the metric precision. 
 if (h < METRIC_PRECISION) 
  h = METRIC_PRECISION; 
 
 MbVector3D to; 
 MbCartPoint3D p0; 
 
 // Building the vector needed for building the cuboid. 
 to = MbVector3D(p[0], p[1]) | MbVector3D(p[0], p[2]); 
 
 // Normalizing the vector to the height. 
 to.Normalize(); 
 to *= h; 
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 p0.Move(to); 
 points.Add(p0); 
 
 // Creating the cuboid. 
 ::ElementarySolid(points, type, names, solid); 
 
 // Checking, adding to the screen and coloring. 
 if (solid != NULL) 
 { 
  TestVariables::viewManager->AddObject(TestVariables::ELEMENTARY_Style, 
solid); 
  solid->SetColor(color); 
 } 
} 
 
 
 
//------------------------------------------------------------------------------------ 
// Build DSM3D 
// --- 
void BuildDSM3D() 
{ 
 std::string filename = "dsm_data.csv"; 
 std::ifstream file(filename); // declare file stream: 
http://www.cplusplus.com/reference/iostream/ifstream/  
 
 int CSVrows = countLinesInCSV(filename); 
 
 // Allocate arrays. 
 int*  dsm_id = new int[CSVrows]; 
 std::string* target_subsystem_name = new std::string[CSVrows]; 
 int*  target_subsystem_id = new int[CSVrows]; 
 std::string* source_subsystem_name = new std::string[CSVrows]; 
 int*  source_subsystem_id = new int[CSVrows]; 
 int*  linked_parameters = new int[CSVrows]; 
 
 // Access the data retrieved by the Python script and allocating it in arrays. 
 for (int row = 0; row <= CSVrows; ++row) 
 { 
  std::string line; 
  std::getline(file, line); 
  if (!file.good()) 
   break; 
 
  std::stringstream iss(line); 
  for (int col = 0; col < 6; ++col) 
  { 
   std::string val; 
   std::getline(iss, val, ','); 
    
   if (row != 0) 
   { 
    switch (col) 
    { 
    case 0: 
     dsm_id[row - 1] = StringToInt(val); 
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     break; 
    case 1: 
     target_subsystem_id[row - 1] = StringToInt(val); 
     break; 
    case 2: 
     target_subsystem_name[row - 1] = val; 
     break; 
    case 3: 
     source_subsystem_id[row - 1] = StringToInt(val); 
     break; 
    case 4: 
     source_subsystem_name[row - 1] = val; 
     break; 
    case 5: 
     linked_parameters[row - 1] = StringToInt(val); 
     break; 
    } 
   } 
  } 
 } 
 
 // IDs of all the subsystems 
 int* all_subsystem_id = new int [2*CSVrows]; 
 std::copy(target_subsystem_id, target_subsystem_id + CSVrows, 
all_subsystem_id); 
 std::copy(source_subsystem_id, source_subsystem_id + CSVrows, all_subsystem_id 
+ CSVrows); 
 int subsystems_number = 0; 
 std::set<int> sa(all_subsystem_id, all_subsystem_id + 2*CSVrows); 
 subsystems_number = sa.size() - 1; 
 delete [] all_subsystem_id; 
 
 // Names of all the subsystems 
 std::string* all_subsystem_name = new std::string[2 * CSVrows]; 
 std::copy(target_subsystem_name, target_subsystem_name + CSVrows, 
all_subsystem_name); 
 std::copy(source_subsystem_name, source_subsystem_name + CSVrows, 
all_subsystem_name + CSVrows); 
 std::set<std::string> sn(all_subsystem_name, all_subsystem_name + 2 * CSVrows); 
 delete[] all_subsystem_name; 
 
 // Redefining the arrays with all susbsystem IDs and names 
 all_subsystem_id = new int[subsystems_number]; 
 all_subsystem_name = new std::string[subsystems_number]; 
 
 for (int i = 0; i < subsystems_number; i++) 
 { 
  std::set<int>::iterator iter_id = sa.begin(); 
  std::set<std::string>::iterator iter_name = sn.begin(); 
 
  std::advance(iter_id, i + 1); 
  std::advance(iter_name, i + 1); 
 
  all_subsystem_id[i] = *iter_id; 
  all_subsystem_name[i] = *iter_name; 
 
  myfile << *iter_id; 
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  myfile << ","; 
  myfile << *iter_name; 
  myfile << "\n"; 
 } 
 myfile.close(); 
 
 // DSM array 
 int** dsm = new int*[subsystems_number]; 
 for (int i = 0; i < subsystems_number; ++i) 
  dsm[i] = new int[subsystems_number]; 
 for (int i = 0; i < subsystems_number; ++i) // for each row 
 {    
  for (int j = 0; j < subsystems_number; ++j) // for each column 
  {  
   dsm[i][j] = 0; 
  } 
 } 
 
 for (int i = 0; i < CSVrows; ++i) // for each row 
 { 
  int dsm_x = FindIndex(all_subsystem_id, subsystems_number, 
target_subsystem_id[i]); 
  int dsm_y = FindIndex(all_subsystem_id, subsystems_number, 
source_subsystem_id[i]); 
  if (dsm_x >= 0 && dsm_y >= 0) 
   dsm[dsm_x][dsm_y] = linked_parameters[i]; 
 } 
 
 // Finding the highest risk 
 int max_risk = 0; 
 for (int i = 0; i < CSVrows; ++i) 
 { 
  if (linked_parameters[i] > max_risk) 
   max_risk = linked_parameters[i]; 
 } 
 float medium_risk = (float)max_risk / 2; 
 
 int cube_side = 100; 
 int risk_increment = 100; 
 
 // Coloring the histogram  
 for (int i = 0; i < subsystems_number; ++i) // for each row 
 { 
  for (int j = 0; j < subsystems_number; ++j) // for each column 
  { 
   if (dsm[i][j] > -1) 
   { 
    float red_color = 0; 
    float green_color = 0; 
    float blue_color = 255; 
    if (dsm[i][j] <= medium_risk) 
    { 
     red_color = 255* (float)dsm[i][j] / max_risk; 
     green_color = red_color; 
     blue_color = 255 - red_color; 
    } 
    else 
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    { 
     red_color = 255; 
     green_color = 255 * (1 - (float)dsm[i][j] / 
max_risk); 
     blue_color = 0; 
    } 
    buildCubeBy3Point(MbCartPoint3D(i * cube_side, 0, j * 
cube_side), 
     MbCartPoint3D(i * cube_side, 0, (j + 1) * cube_side), 
     MbCartPoint3D((i + 1) * cube_side, 0, j * cube_side), 
     risk_increment * dsm[i][j], 
     RGB(red_color, green_color, blue_color)); 
   } 
  } 
 } 
} 
 
 

 


