

MASTER’S THESIS

Integrating Concurrent Conceptual Systems Design with 3D Modeling

Master’s Educational Program Space and Engineering Systems

Student: Nikita Letov
signature, name

Research Advisor:

 Clément Fortin, Professor

signature, name, title

Moscow 2018

Copyright 2018 Nikita Letov. All rights reserved.

The author hereby grants to Skoltech permission to reproduce and to distribute publicly paper and electronic copies of
this thesis document in whole and in part in any medium now known or hereafter created.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Интегрирование параллельного концептуального проектирования систем с помощью

трёхмерного моделирования

Магистерская образовательная программа «Космические и инженерные системы»

Студент: Летов Никита Николаевич
подпись, ФИО

Научный руководитель:

 Фортин Клемент, Профессор

подпись, ФИО, должность

Москва, 2018

Авторское право 2018 Никита Летов. Все права защищены.

Автор настоящим дает Сколковскому институту науки и технологий
 разрешение на воспроизводство и свободное распространение бумажных и электронных копий настоящей
диссертации в целом или частично на любом ныне существующем или созданном в будущем носителе.

3

Integrating Concurrent Conceptual Systems Design with 3D Modeling
Nikita Letov

Submitted to the Skolkovo Institute of Science and Technology on June 1 2018

ABSTRACT

Nowadays, one of system-wide approaches to facilitate a product realization process is Concurrent
Engineering which can be applied owing to being enable to choose the best practice to improve
product introduction process, being capable to improve cross functional integration and
communication, and being empowered to apply a set of comprehensive methods for design analysis
so that designers can select the most optimal design solution which is not only considering the design
constraints, but also taking the constraints of production system, logistics and distribution into
account. Hence, it can cover majority of problems in conceptual design phase which are generated
due to lack of empathy between design and manufacturing.

Data used in initial phases of product development is predominantly behavioral in nature, that
is, a large part of this data does not refer to the geometrical parameters of the system. However, current
PLM-systems are based on the geometrical master model concept and thus work best for the detailed
design, where the data is mostly geometrical. Thereunder, there is still a gap between parametric and
geometric modelling which has to be eventually filled.

The purpose of this study was the implementing of a risk representing methodology that could
enhance development of complex system architectures and technology planning based on 3D
modeling. It was proposed to develop a software prototype which should consist of a parametric
modeling tool, a geometric modeling tool, and a system modeling methodology embedded in it. It is
proposed to fill the need in the parametric modeling tool by CEDESK – a concurrent conceptual
design tool (Knoll and Golkar, 2016). C3D Modeler is proposed to be a geometrical modeling tool for
the software prototype. The estimation of the technology integration risk proposed by Garg et al.
(2017) was studied, adapted and implemented in a software prototype of the demonstrator as a way to
represent interfaces of a system and risk they possess.

As a result, the methodology was implanted into a software prototype which could be used for
concurrent conceptual design of complex systems such as space systems. The software prototype
allows to represent a 3D model of a system being developed. Impact scores, failure likelihood, and
risk scores of interfaces between subsystems of the system are represented as a 3D design structure
matrix (DSM) histogram. The user has an ability to retrieve information for each interface. The results
indicate that the developed software prototype has a potential to enhance demonstrator feasibility
assessment by representing large amounts of interfaces in 3D and to ensure a successful development
of a product.

Research Advisor:
Name: Clément Fortin
Degree: ing. PhD, Mechanical Engineering, Queen's University at Kingston, Canada (1985)
Title: Professor

4

Интегрирование параллельного концептуального проектирования систем с помощью
трёхмерного моделирования
Летов Никита Николаевич

Представлено в Сколковский институт науки и технологий 1 июня 2018 г.

РЕФЕРАТ

Ныне, одним из всесистемных подходов по содействию процессу реализации изделия является
параллельное проектирование, которое можно подобающим образом применять с целью полу-
чить выборку наилучшей практики чтобы улучшить процесс внедрения изделия; улучшить
межфункциональные интеграцию и связь; а также иметь возможность применить исчерпыва-
ющие методы для анализа проектирования так, что проектировщики могли выбрать наиболее
оптимальное проектировочное решение, рассматривая не только проектировочные ограниче-
ния, но и ограничения производственной системы, логистики и распределения. Следовательно,
это может решить большинство проблем на этапе концептуального проектирования, возникаю-
щие из-за нехватки взаимосвязи между проектированием и производством.

Данные, используемые на начальных фазах разработки изделия, преимущественно по-
веденческие, бóльшая часть этих данных не связана с геометрическими параметрами системы.
Однако, существующие PLM-системы основаны на концепте ведущей геометрической модели,
а следовательно, лучше всего применяются на этапе детального проектирования, где данные в
большинстве геометрические. А значит, ныне существует разрыв между параметрическим и
геометрическим проектированием, который должен быть преодолён.

Цель данной работы состоит во внедрении методологии для отображения интерфейсов,
которая могла бы усовершенствовать разработку архитектур сложных систем и технологичес-
кое планирование на основе трёхмерного моделирования. Было предложено разработать про-
граммный прототип, состоящего из инструмента параметрического моделирования, инстру-
мента геометрического моделирования и методологии для моделирования систем. В качестве
инструмента параметрического моделирования было предложено использовать CEDESK –
инструмент для параллельного концептуального проектирования (Knoll and Golkar, 2016). C3D
Modeler был предложен как инструмент геометрического моделиро-вания. Оценка рисков
интегрирования технологий (Garg et al., 2017) была изучена, адаптирована и внедрена в
программный прототип демонстрирующей модели в качестве способа отображения
интерфейсов системы и рисков, которые они заключают.

Как результат, эта методология была внедрена в программный прототип, который мо-
жет использоваться для параллельного концептуального проектирования таких сложных сис-
тем, как космические системы. Программный прототип позволяет отображать 3D модель
разрабатываемой системы. Оценка влияния, вероятность отказа и оценка рисков интерфейсов
между подсистемами системы отображаются в виде 3D гистограммы проектировочной струк-
турной матрицы (DSM). Пользователь может получить информацию о каждом интерфейсе. Ре-
зультаты указывают на то, что разработанный программный прототип обладает потенциалом
для усовершенствования оценки осуществимости демонстрирующей модели посредством
отображения большого количества связей в 3D и обеспечения успешной разработки изделия.

Научный руководитель:
Ф.И.О.: Клемент Фортин
Учёное звание, степень: ing. PhD, Машиностроение, Университет Куинс в Кингстоне, Канада
(1985)
Должность: Профессор

5

ACKNOWLEDGEMENTS

Firstly, I specially want to thank Clément Fortin for supervising me throughout the whole period of

the study, for believing in me, for his full support, insightful discussions and mentorship throughout

the project, and giving me the opportunity to work with Airbus, and getting the chance to do my

Master’s thesis at Skoltech. Clément’s constant enthusiasm for research fueled me during my time at

Skoltech, and I suspect that most of the good ideas I had were secretly planted there by Clément, and

he convinced me they were my own.

I am truly indebted to Rob Vingerhoeds, who hosted me for two months at ISAE–SUPAERO

and I want to thank him for the interest shown in my work and the input he provided. He balanced his

careful, thorough skepticism of every word, graph, and thought I presented him with a strong

undercurrent of encouragement and support, which improved me greatly as a researcher and a person.

I would like to thank Dominik Knoll, who provided insight and excellent recommendations.

Without him developing CEDESK, the whole project couldn’t be possible. Thanks to Ilya Yuskevich

and Ksenia Smirnova, who, alongside with me, worked hard in Toulouse, which was truly difficult

considering the nice weather of the South of France. Thanks to Rustam Akhtyamov, Anastasia

Stelvaga, Simone Briatore, Olga Danko, Nikolay Groshkov, Nicola Garzaniti, Carolina Moreno

Aguirrem and Ignacio Hernandez Arroyo for working alongside with you all at CEDL.

I would like to thank Alessandro Golkar for his patience and allowing me to visit the Airbus

R&T campus and see the way the Concurrent Design Faculty of Airbus works. It was always a

pleasure talking with him about the project and everything else in the world. I am very thankful for

his advice and support even though I wasn’t his problem.

I would like to thank many other people at the Airbus R&T campus who influenced me as

well. Thanks to Olivier de Weck and Fabienne Robin for being amazingly supportive. Thanks to

Jyotsna Budideti, Sandro Salgueiro, Ulkar Alakbarova, Jonathan Karl Landolt, Vasco Guilherme

Pesquita, Raffaele Nova Gradini and Nitin Ramchand Lalwani for having great discussions over

lunches.

I couldn’t have made it through without the staff of C3D Labs. Thanks to Oleg Zykov for

providing me the internship opportunity. Thanks to Eduard Maximenko, Alexey Kozyrev, and

Nikolay Golovanov, I have learned the theoretical foundations of geometric modeling and gained

practical experience of applying a solid modeling kernel.

I would like to thank Dzmitry Tsetserukou for helping me out in my time of need when I had

to transfer to the Space CREI and for teaching me robotics and control theory better than anyone else

6

could possibly do. Thank you to Ighor Uzhinnsky and his research group members – Sergei Nikolaev,

Daniel Kekere and Eldar Shakirov – for teaching me PLM, which helped me to consider a system,

both as whole and in the details. It helped me in writing this thesis and I will always be grateful for

that.

And those are just the people who influenced my research directly. There’s no way I can ever

list all of the amazing people in my life who got me this far. My friends kept me sane, grounded, and

laughing throughout everything. My time as an undergraduate with Zakhar Dmitriev, Artem Elin,

Sergei Koltunov, Alexey Atanov, Oleg Naumov, Egor Plishchenko at BMSTU was crucial, and I was

lucky to fall into their orbits when I was so impressionable. Andrey Semyonkin had been by my side

ever since our high school and can’t be thanked enough for that. Thanks to all my friends at Skoltech.

Thanks to Dmitry Ermachenkov and Andrey Sartison – good luck with your start-up, guys! Thanks to

Oleg Sudakov, Alexander Morozov, Sophia Salas, Natalia Glazkova, Alexandra Tyurlikova, Alexey

Kovalov, Artem Volokhaty, Nina Mazyavkina and many others for sharing some courses with me and

having a nice time with you in between the courses and being a great distraction to my research

sometimes. Thanks to all Skoltech students, professors and staff for making the institute the way it is.

Thanks to my mother for being nothing but supportive of me in everything I do, even now when we

don’t get along sometimes.

Finally, thank you to my Anastasia, my once and future closer, your patience with my Skoltech

experience has been unending. We made it together. I’ve been lucky to have your confidence, patience,

and love. Without you by my side through the most difficult times of this journey, the accomplishment

wouldn’t be half as sweet.

Thank you, everyone.

7

CONTENTS

ABSTRACT ... 3

РЕФЕРАТ .. 4

ACKNOWLEDGEMENTS ... 5

LIST OF FIGURES ... 9

LIST OF TABLES ... 12

ACRONYMS.. 13

1 INTRODUCTION... 15

1.1 Background and context ... 15

1.2 Research statement ... 16
1.3 Research questions ... 17
1.4 Structure of the Thesis .. 20

2 LITERATURE REVIEW ... 21

2.1 Theoretical framework ... 21
2.1.1 Request for Information .. 21
2.1.2 Production Design and Development Process ... 29
2.1.3 Concurrent engineering... 31
2.1.4 Concurrent engineering for space systems .. 32

2.2 System Modeling.. 32
2.2.1 OPM ... 33
2.2.2 Technology integration risks ... 34
2.2.3 DSMV and DSM3D .. 38

2.3 Software Review .. 40
2.3.1 Virtual Satellite .. 40
2.3.2 IDM ... 43
2.3.3 Cameo Systems Modeler .. 44
2.3.4 CEDESK .. 46

3 APPROACH ... 48

3.1 Parametric modeling tool .. 49

3.2 Geometric modeling tool .. 51

4 RESULTS .. 53

4.1 Proposed software prototype architecture ... 53

8

4.2 Development environment .. 55
4.2.1 Microsoft Visual Studio .. 55
4.2.2 CMake .. 56
4.2.3 SourceTree ... 57
4.2.4 MySQL Connector/Python ... 60

4.3 Use case ... 61
4.4 Application ... 62

4.4.1 Implementation... 62
4.4.2 Testing ... 63

5 FUTURE WORK AND CONCLUSIONS ... 71

5.1 Avenues of future work .. 71
5.2 Conclusions .. 72

REFERENCES .. 74

Appendix A: An example of constructing an extrusion body with C3D Modeler 79

Appendix B: The Python script used for establishing a secure connection between an

application working on C++ and MySQL databases .. 83

Appendix C: Code of the main CMake file used in the study .. 92

Appendix D: Excerpts of the code used for 3D DSM plotting .. 99

9

LIST OF FIGURES

Figure 1.1 Committed life cycle cost versus time, adapted from INCOSE (2010) 18

Figure 1.2 Technology Readiness Levels, adapted from NASA (2007) .. 19

Figure 2.1 What modeling approach/method did you use? (Note: The following methods are mostly

identified in the Survey of MBSE Methodologies). Based on data from Cloutier and Bone (2010) . 22

Figure 2.2 What was the primary purpose of the model? Based on data from Cloutier and Bone

(2010) .. 23

Figure 2.3 What type of system was SysML applied to? Based on data from Cloutier and Bone

(2010) .. 23

Figure 2.4 What Modeling tools were used on the project? Based on data from Cloutier and Bone

(2010) .. 24

Figure 2.5 How satisfied are you with primary SysML tool used on this project? Based on data from

Cloutier and Bone (2010) ... 25

Figure 2.6 The main IBM Rational Rhapsody interface components, including Browser (Model

Browser tab in Eclipse), Diagram Drawing Area, Output Window and Features Window, adapted

from IBM Knowledge Center (2016) ... 26

Figure 2.7 User interface of the MagicDraw modeling tool, adapted from Charney (2005) 27

Figure 2.8 User interface of Sparx Systems Enterprise Architect, adapted from Enterprise

Architecture (2009) .. 28

Figure 2.9 Sequential Engineering vs Concurrent Engineering, adapted from Yazdani (1999) 31

Figure 2.10 An OPM diagram example. Adapted from Dori (2003) ... 34

Figure 2.11 Summary of risk calculation method, adapted from Garg et al. (2017) 35

Figure 2.12 Vector representation of the components and their scores, adapted from Garg et al.

(2017) .. 36

Figure 2.13 Two-axis view of likelihood and impact, adapted from Garg et al. (2017) 36

10

Figure 2.14 Example of a DSM matrix of interfaces. Interpretation: task D requires information

from tasks E, F, and L; task B transfers information to tasks C, F, G, J, and K, adapted from de

Weck (2012) .. 37

Figure 2.15 DSM view of the system risk, adapted from Garg et al. (2017) 38

Figure 2.16 Clustered DSMV of Kodak Fun Saver camera with a legend of modules and interfaces,

adapted from Alizon et al. (2007) ... 39

Figure 2.17 Two views of the camera family DSM3D, showing several Kodak single-use camera

DSM-s overlapping in 3D, adapted from Alizon et al. (2007) ... 40

Figure 2.18 3D Visualization and interaction of the system model in the software Virtual Satellite,

adapted from Deshmukh et al. (2015) .. 41

Figure 2.19 Architecture of Virtual Satellite exchanging system model information within the

Concurrent Engineering Facility as well as data interaction in a VR environment, adapted from

Deshmukh et al. (2015) .. 42

Figure 2.20 IDM architecture, adapted from Bousquet et al. (2005), courtesy of ESA. 43

Figure 2.21 Architecture of Cameo Systems Modeler, adapted from NoMagic (2017) 45

Figure 2.22 Starting screen of CEDESK .. 47

Figure 3.1 Proposed next generation MBSE platform structure .. 48

Figure 3.2 The approach proposed to achieve the target of this thesis project 49

Figure 3.3 Tool architecture – a central data exchange connecting all domain models, adapted from

Bandiccheri et al. (2000) .. 50

Figure 3.4 Geometric model object operated by C3D geometric kernel, adapted from C3D Labs

(2017) .. 52

Figure 4.1 The top level of the architecture .. 53

Figure 4.2 The second level of the architecture .. 54

Figure 4.3 Block diagram for representing the Manager Editor interface with the Window 55

Figure 4.4 User interface of CMake ... 57

Figure 4.5 Agile development value proposition, adapted from VersionOne (2005) 58

11

Figure 4.6 User interface of SourceTree ... 59

Figure 4.7 3U CubeSat – Tyvak Endeavor, adapted from Knoll et al. (2016) 61

Figure 4.8 3U CubeSat – Tyvak Endeavor without the side panels and the solar panels, adapted from

Knoll et al. (2016) .. 62

Figure 4.9 Initial screen of the developed software prototype ... 64

Figure 4.10 Part of the File menu of the developed software prototype... 64

Figure 4.11 Windows for entering user credentials. (a) Window for entering a username. (b)

Window for entering a password. (c) Window for entering a host name. (d) Window for entering a

database name .. 65

Figure 4.12. 3D DSM view of the impact scores (or linked parameters) between 9 subsystems 68

Figure 4.13 3D DSM view of the risk scores between 9 subsystems. The arrow here highlights one

of the interfaces for the case study ... 69

Figure 4.14 Information about the interface highlighted in Figure 4.11 in a separate sub-window .. 70

Figure 4.15 User interface of the developed software prototype showing the MDI structure

implemented in it ... 70

Figure 5.1 A concept of a Next Generation MBSE platform ... 72

Figure A.1 Data used for construction of an extrusion body and the scheme of inheriting the

parameters of constructed extrusion body, adapted from C3D Labs (2017) 81

Figure A.2 A two-dimensional contour and flat surface that can be used for an extrusion, adapted

from C3D Labs (2017) ... 81

Figure A.3 A thin-walled closed body that was constructed by extrusion based on specified contour

parameters, adapted from C3D Labs (2017) ... 82

12

LIST OF TABLES

Table 2.1 Overall value average of all diagrams. Based on data from Cloutier and Bone (2010)..... 25

Table 2.2 Phases of the generic product development process, adapted from Ulrich and Eppinger

(2008) .. 29

Table 2.3 CIC’s discipline and tool list, adapted from Bousquet et al. (2005) 44

Table 3.1 Comparison of tools for conceptual design in aerospace, adapted from Knoll and Golkar

(2016) .. 50

Table 4.1 Example dataset used for the case study ... 66

Table 4.2 DSM view of the impact scores (or linked parameters) between 9 subsystems 67

Table 4.3 DSM view of the risk scores ... 69

Table B.1 Data imported from an example MySQL database by running the Python script from the

C++ software prototype ... 87

13

ACRONYMS

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided Manufacturing

CDF Concurrent Design Facility

CE Concurrent Engineering

CEDESK Concurrent Engineering Data Exchange SKoltech

CEDL Concurrent Engineering Design Laboratory

CEF Concurrent Engineering Facility

CIC Centre d’Ingénierie Concourante (French: Center for Concurrent

Engineering)

CNES Centre National d’Etudes Spatiales (French: National Centre for Space

Studies)

DISC Le Département d’ingénierie des systèmes complexes (French: Department

of Complex Systems Engineering)

DLL Dynamic-Link Library

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. (German: German

Aerospace Center)

DSM Design Structure Matrix

ESA European Space Agency

ESTEC European Space Research and TEChnology Cenctre

GUI Graphical User Interface

HMI Human Machine Interface

IDM Integrated Design Model

ISAE-SUPAERO École nationale supérieure de l'aéronautique et de l'espace (French: National

School of Aeronautics and Space)

JDBC Java DataBase Connectivity

JPL Jet Propulsion Laboratory

MBSE Model-Based Systems Engineering

MDI Multiple Document Interface

NASA National Aeronautics and Space Administration

OCDT Open Concurrent Design Tool

14

ODBC Open DataBase Connectivity

OO Object Oriented

OMG Object Management Group

OPD Object-Process Diagram

OPL Object-Process Language

OPM Object-Process Methodology

OpenMBEE Open Model Based Engineering Environment

PD Product Development

PDP Product Development Process

PLM Product Lifecycle Management

QA Quality Assurance

R&T Research and Technology

RFI Request for Information

S. E. Societas Europaea (Latin: European Company)

SAPPhIRE State-Action-Part-Phenomenon-Input-oRgan-Effect

Skoltech Skolkovo Institute of Science and Technology

SysML Systems Modeling Language

TRL Technology Readiness Level

UML Unified Modeling Language

VirSat Virtual Satellite

VR Virtual Reality

15

CHAPTER 1

INTRODUCTION

1.1 Background and context

Innovation and product development are being the cornerstone of structural growth within the market

environment nowadays. But for new product development, the stakes are high, the requirements are

increasing and there is a new requirement of delivering more rapidly so as to beat the competition to

the market.

New product development is a complex endeavor, which can typically be troublesome to

handle and difficult to check beforehand what the end result will be. There is a large uncertainty and

sudden things happening along the way, that affect the scope and direction of a product development

project. Therefore, these projects can often be difficult to arrange, and plans become obsolete shortly

after they are created.

Nowadays, in a turbulent market, developing and launching a new product into the market is

one of competitive strategies considered by many large and small enterprises. This strategy enables a

company to earn larger market penetration than competitors; consequently, achieving a shorter time-

to-money period and increasing the rate-of-return. Establishing this strategy demands that all

functions within a supply chain – such as marketing, design, procurement, manufacturing, and

distribution – to perform as a unique body of a system. The economic success of most firms depends

on their ability to identify the needs of customers and quickly create products that meet these needs

and can be produced at low cost. Achieving these goals is not solely a marketing problem; it is a

product development problem involving all of these functions (Ulrich and Eppinger, 2008). Product

development and Production development are two important processes, which are playing critical role

in achieving this competitive capability. One of system-wide approaches to facilitate a product

realization process is Concurrent Engineering which can be applied owing to being enable to choose

the best practice to improve product introduction process, being capable to improve cross functional

integration and communication, and being empowered to apply a set of comprehensive methods for

design analysis so that designers can select the most optimal design solution which is not only

considering the design constraints, but also taking the constraints of production system, logistics and

16

distribution into account. Hence, it can cover majority of problems in conceptual design phase, which

are generated due to lack of empathy between design and manufacturing.

Whereas the center of gravity is in design engineering function (Wheelwright, 1985), meaning

that a design must satisfy various and dynamic customer requirements; the competence of

manufacturing must be able to produce a designed product rapidly. Product realization process

involves both product development and production development processes as two integrated and

dependent processes for achievement of efficient development and realization process (Bellgran and

Säfsten, 2009). Thereupon, it is essential to manage product realization process, from concept

development to manufacturing of the commercial product, efficiently and effectively. The ultimate

purpose of the company is achieving high degree of quality in the shortest time and with as lowest

cost as possible. Hence, a central area is the collaboration between product developers (i.e. designers)

and production developers (i.e. production engineers) in order to generate the fitness between product

design and manufacturing competence.

It is believed that the Industry 4.0 concept has potential to solve many product lifecycle issues.

Industry 4.0 is the current trend of automation and data exchange in manufacturing technologies. It

includes cyber-physical systems, the Internet of things and cloud computing (Hermann et al., 2016).

Industry 4.0 creates what has been called a “digital factory”. Within the modular structured

smart factories, cyber-physical systems monitor physical processes, produce a virtual copy of the

physical world and make decentralized decisions.

However, the reality still appears too far from Industry 4.0 nowadays. A way for reducing the

complexity of systems should be developed in order to bring better understanding of a system to

systems engineers. One of the potential ways to achieve that is to fill the gap between parametric and

geometric modeling.

The investigation was conducted within the Concurrent Engineering Design Laboratory

(CEDL) at Skoltech, the Complex Systems Engineering Department (DISC) at ISAE-SUPAERO, and

the R&T Campus of Airbus S. E. This thesis is focused on development of a software prototype that

could potentially enhance conceptual design of complex systems.

1.2 Research statement

Based on data analysis of space projects, the data used in initial phases of product development are

predominantly behavioral in nature, that is, a large part of this data does not refer to the geometrical

17

parameters of the system. However, current PLM-systems are based on the geometrical master model

concept and thus work best for the detailed design, where the data is mostly geometrical. Thereunder,

there is still a gap between parametric and geometric modelling which has to be eventually filled.

This study is focused on applying a model-based methodology for representing interfaces and

impacts, likelihood, and risks they possess. That could enhance development of complex system

architectures and technology planning by filling the gap between parametric and geometric modeling

based on 3D modeling. Since models provide the basis for rigorous management of future technology

investments and allow for identification of synergies across multiple technology areas (Knoll and

Golkar, 2017), it is proposed to develop a software prototype which should consist of a parametric

modeling tool, a geometric modeling tool, and a system modeling methodology embedded in it. The

software prototype is supposed to be used for concurrent conceptual design of complex, reliable, or

complex and reliable systems such as space systems. The software prototype shall allow representing

a 3D model of a system being developed and interfaces between its subsystems in 3D in such way,

that it could enhance demonstrator feasibility assessment by representing large amounts of interfaces

in 3D and to ensure a successful development of a product. The software prototype is proposed to be

validated on a selected use case.

1.3 Research questions

The main goal of the study is to propose an efficient way to analyze a complex system and interfaces

in it, including impact, likelihood, and risk they might have on conceptual design stage of a system’s

lifecycle.

One of the efficient methods of designing a complex system is Concurrent Engineering (CE)

– a systematic technique for integrated product development that emphasizes the reaction to customer

expectations. It embodies team values of co-operation, trust and sharing in that kind of way that

decision-making is by consensus, concerning all perspectives in parallel, from the beginning of the

product life cycle (ESA, 2012). In its conventional use, concurrent design is used to lessen

development cost and schedule in integrated product development (Di Domizio and Gaudenzi, 2008).

It is proposed to fill the need in a concurrent conceptual design tool by CEDESK developed

by Knoll and Golkar (2016). CEDESK brings concurrency to conceptual design and helps to solve the

problem of designing complex systems composed of multiple subsystems referring to different

disciplines. Conceptual stage of life cycle is one of the most crucial ones. Costs committed on the

18

conceptual design stage of lifecycle are equal to about 70%, while only 8% are spent as illustrated in

Figure 1.1. It is proposed to use CEDESK in the conceptual design stage of lifecycle in order to lower

costs being spent on it.

Figure 1.1

Committed life cycle cost versus time, adapted from INCOSE (2010)

It is proposed to use NASA Technology Readiness Levels (TRLs) represented in Figure 1.2

as a method for technology maturity assessment of the demonstrator. TRL is, at its most basic, a

description of the performance history of a given system, subsystem, or component relative to a set of

levels. The TRL essentially describes the state of the art of a given technology and provides a baseline

from which maturity is gauged and advancement defined. Even though the concept of TRL has been

around for almost 20 years, it is not well understood and frequently misinterpreted. It is impossible to

understand the magnitude and scope of a development program without having a clear understanding

of the baseline technological maturity of all elements of the system (NASA, 2007).

The estimation of the technology integration risk proposed by Garg et al. (2017) was studied,

adapted and implemented in a software prototype of the demonstrator.

Since the gap between parametric and geometric modelling has to be filled, it was proposed to

integrate a solid modeling kernel with MySQL databases used in CEDESK in a software prototype

which has a potential to enhance demonstrator feasibility assessment by representing DSM matrices

19

in 3D. For this purpose, it is proposed to use C3D Geometric Kernel (C3D Labs, 2017) and the

principles of the development of geometric modeling systems proposed by Golovanov (2014) in order

to address more efficient 2D and 3D modelling in developing the software.

It is proposed to use Nano-satellite design as a use case to concretely demonstrate the

applicability of the principles and solutions developed during the project.

Figure 1.2

Technology Readiness Levels, adapted from NASA (2007)

20

1.4 Structure of the Thesis

The outline of the thesis is as follows:

• In Chapter 2, the literature review for the study and research questions will be presented. The

scope of the literature review, including the research areas covered, is listed.

• In Chapter 3, the approach and methods to answer the main questions of the study will be

introduced.

• In Chapter 4, the results achieved during the study will be covered and the demonstration of

the application performance will be given.

• In Chapter 5, the results will be analyzed and discussed and the conclusions will be given,

along with suggestions for further research.

21

CHAPTER 2

LITERATURE REVIEW

A literature review was carried out in order to explain the context and reasoning behind choosing the

papers covered in it.

The literature review is structured as follows:

• Section 1 of Chapter 2 will introduce literature sources relevant to understanding the problem

definition and research questions. It consists of the Request for Information which is basically

data from the survey of respondents from the system engineering community, as well as the

theoretical framework of product design, product realization, and development process.

• Section 2 of Chapter 2 will introduce several approaches to represent links and interconnection

in systems. The description of Object Process Methodology and DSM3D are presented and

proposed to be implemented in a software prototype.

• Section 3 of Chapter 2 will review various applications with the purpose similar to the ones

covered in this study.

2.1 Theoretical framework

2.1.1 Request for Information

In 2010 the School of Systems and Enterprises of the Stevens Institute of Technology published a

report with the complete set of textual responses to the questions contained in the responses to the

SysML Request for Information (RFI) (Cloutier and Bone, 2010). The report includes over 50

questions (including open-ended responses) that were provided by a sample of respondents from the

system engineering community. The study was conducted in response to the OMG SysML Request

for Information in an attempt to develop the SysML standard. The RFI is relevant to this research

since it provides many viewpoints on Systems Engineering itself. Many of the responses covered in

22

the RFI, if taken into consideration, could be used to better understand the state of the art of systems

modeling.

The RFI responses were submitted via an on-line survey that was accessible from the OMG

SysML web site. The intent of the RFI is to assist with guiding the roadmap for future evolution of

SysML, by understanding, what is operating well, the issues, proposed solutions, and additional

capabilities that are desired of the language. The RFI has two parts, where part I includes 22 questions

related directly to the language, and part II includes 38 additional questions related to how SysML is

used with model-based systems engineering (MBSE) methods, tools, training, and metrics.

Although there is a number of MBSE approaches and methods developed, many people are

familiar with the company specific ones as illustrated in Figure 2.1.

Figure 2.1
What modeling approach/method did you use? (Note: The following methods are mostly
identified in the Survey of MBSE Methodologies). Based on data from Cloutier and Bone

(2010)

Figure 2.2 represents the primary purposes of the model in systems engineering according to

the report and shows the significance of the model.

37.3%
33.9% 33.9%

16.9%
15.3%

13.6%
10.2% 10.2%

6.8%

1.7%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Com
pa

ny
 sp

eci
fic

Fun
cti

on
al/

str
uc

tur
ed

 an
aly

sis

OOSEM
OOA/D

Harm
on

y
Othe

r

RUP SE/M
DSD

SYSMOD
Non

e
OPM

23

Figure 2.2

What was the primary purpose of the model? Based on data from Cloutier and Bone (2010)

A chart diagram provided in Figure 2.3 shows that SysML is mostly applied to the Space,

Aircraft, and Defense types of systems, i.e. the most complex types of systems.

Figure 2.3

What type of system was SysML applied to? Based on data from Cloutier and Bone (2010)

As presented in Figure 2.4, the most popular modeling tools according to the data are IBM

Rhapsody (45.0%), NoMagic (35.0%), and Sparx Systems Enterprise Architect (18.3%).

61.00%

72.90%

52.50%

64.40%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Develop system
concepts

Improve quality of
requirements and
design to reduce

downstream defects

Improve productivity
of systems

engineering effort

Improve
communications

among the
development team

19.60%

7.10%

19.60%

7.10%
7.10%

23.20%

16.10%
Aircraft
Automotive
Defense
IT
Medical
Space Systems
Other

24

Figure 2.4

What Modeling tools were used on the project? Based on data from Cloutier and Bone (2010)

As shown in Table 2.1 and Figure 2.5, people are satisfied the most with InterCAX ParaMagic

(MagicDraw plugin) having 4.21 out of 5.0 score, although it is not the most popular modeling tool

as could be seen in Figure 2.4. At the same time, IBM Rhapsody has a low score of 3.57 out of 5.0,

while being the most popular modeling tool according to Figure 2.4. This implies that IBM Rhapsody

provides some crucial for systems engineering feature, while being not as user-friendly as other

systems modeling tool.

45.00%

35.00%

26.70%

18.30% 16.70%

8.30% 8.30%
5.00% 3.30% 3.30% 1.70%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

IB
M

 R
ha

ps
od

y

N
oM

ag
ic

 M
ag

ic
D

ra
w

O
th

er
 (p

le
as

e
sp

ec
ify

)

Sp
ar

x
Sy

st
em

s E
nt

er
pr

is
e

A
rc

hi
te

ct

A
rti

sa
n

St
ud

io

In
te

rC
A

X
 P

ar
aM

ag
ic

 (M
ag

ic
D

ra
w

pl
ug

in
)

TO
PC

A
SE

D
 (o

pe
n

so
ur

ce
)

So
ftw

ar
e

St
en

ci
ls

 -
M

ic
ro

so
ft

V
is

io
Sy

sM
L

te
m

pl
at

es
)

Em
be

dd
ed

Pl
us

 E
ng

in
ee

rin
g

(T
hi

rd
 p

ar
ty

fo
r I

B
M

 R
at

io
na

l)

IB
M

 T
au

Pa
py

ru
s f

or
 S

ys
M

L
(o

pe
n

so
ur

ce
 e

cl
ip

se
m

od
el

in
g

to
ol

)

25

Table 2.1
Overall value average of all diagrams. Based on data from Cloutier and Bone (2010)

 Artisan

Studio
IBM

Rhapsody
InterCAX
ParaMagic

(MagicDraw
Plugin)

NoMagic
MagicDraw

Sparx
Systems

Enterprise
Architect

Rating
Average

Overall
value

average of
all

diagrams

3.88 3.57 4.21 3.95 3.87 3.82

Figure 2.5

How satisfied are you with primary SysML tool used on this project? Based on data from
Cloutier and Bone (2010)

From the RFI some key modeling tools can be identified. In this part of the literature review a

few of them will be analyzed:

• IBM Rhapsody

• NoMagic MagicDraw

• Sparx Systems Enterprise Architect

3.88

3.57

4.21

3.95
3.87

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Artisan Studio IBM Rhapsody InterCAX
ParaMagic

(MagicDraw
plugin)

NoMagic
MagicDraw

Sparx Systems
Enterprise
Architect

26

They are selected due to their high popularity among systems engineers shown in Figure 2.4.

All of them are based on UML and applied mostly to software development, yet some lessons

can be learned by analyzing the tools.

IBM Rational Rhapsody, is a modeling environment based on UML, is a visual development

environment for systems engineers and software developers creating real-time or embedded systems

and software. Rational Rhapsody uses graphical models to generate software applications in various

languages, including C, C++, Ada, Java and C#. The main IBM Rational Rhapsody interface

components are illustrated in Figure 2.6.

Figure 2.6
The main IBM Rational Rhapsody interface components, which include Browser (Model
Browser tab in Eclipse), Diagram Drawing Area, Output Window and Features Window,

adapted from IBM Knowledge Center (2016)

MagicDraw is a visual UML, SysML, BPMN, and UPDM modeling tool with team

collaboration support. Designed for business analysts, software analysts, programmers, and QA

engineers, this dynamic and versatile development tool facilitates analysis and design of object

oriented (OO) systems and databases. It provides the code engineering mechanism (with full round-

trip support for J2EE, C#, C++, CORBA IDL programming languages, .NET, XML Schema, WSDL),

27

additionally with database schema modeling, DDL generation and reverse engineering facilities

(Davis, 2010). Figure 2.7 represents the user interface of the MagicDraw modeling tool.

Figure 2.7

User interface of the MagicDraw modeling tool, adapted from Charney (2005)

Sparx Systems Enterprise Architect is a visual modeling and design tool based on the OMG

UML. The platform supports: the design and construction of software systems; modeling business

processes; and modeling industry-based domains. It is used by businesses and organizations to not

only model the architecture of their systems, but to process the implementation of these models across

the full application development lifecycle (Sparx Systems, 2018). The user interface of Sparx Systems

Enterprise Architect is provided in Figure 2.8.

28

Figure 2.8

User interface of Sparx Systems Enterprise Architect, adapted from Enterprise Architecture
(2009)

All those modeling tools are being used for development and quality assurance of large

software projects. They are considered to be highly collaborative and agile, yet many users consider

its user interface ‘clunky’ (TrustRadius, 2014). The interface links between subsystems intersect each

other on an often basis, which makes the process of analyzing them complex. This implies that

although a tool can have a great functionality, its GUI can spoil the whole experience and thus affect

the result. As seen in Figures 2.6, 2.7, and 2.8, the UML system modeling tools have a similar user

interface. The interface is not interactive for new users, which means that they have to spend time,

which is crucial in conceptual design stage, on learning.

It can also be noticed, that modeling tools are crucial for industries developing complex and

reliable systems, such as the space industry.

29

2.1.2 Production Design and Development Process

Product Development (PD) is a transformation of customers’ needs/desires or market opportunities

into what can be sold in available markets for a logical price and reasonable production cost; “he set

of activities beginning with the perception of the market opportunity and ending in the production,

sale, and delivery of the product (Ulrich and Eppinger, 2008). Product Development Process (PDP) is

a sequence of steps or activities which an enterprise employs to conceive, design, and commercialize

a product (Ulrich and Eppinger, 2008).

Many of the steps within a PDP are intellectual and organizational rather than physical. The

conclusion of the product development process is the product launch meaning; when a product

becomes available for distribution and procurement in a marketplace (Ulrich and Eppinger, 2008).

There are two types of product development process – stage-gate and spiral processes. Each

one of them constitutes the generic product development phases, but they differ in the arrangement of

the sequence of phases. The stage-gate product development process is comprised of distinct stages

or phases as well as a review or gate at the end of each phase in order to evaluate whether the previous

phase is successfully completed. If the review fulfills the requested conditions the project proceeds to

the next phase, otherwise the project will iterate through a former phase. Sometimes this iteration can

be difficult and costly (Unger and Eppinger, 2009). The spiral product development process includes

several planned iterations that span various phases of product development process. It is mainly

implemented by software industry (Unger and Eppinger, 2009).

The generic product development process consists of six phases represented in Table 2.2 which

based on their chronological sequence are as follows: planning, concept development, system-level

design, detail design, testing and refinement, and production ramp-up.

Table 2.2
Phases of the generic product development process, adapted from Ulrich and Eppinger (2008)

Phase Description

Planning This phase includes three overall dimensions. The basic approach to markets and

products with respect to the competitor’s activities should be determined. This

approach is called corporate strategy. Hence the assessment of technology

development and the evaluation of marketing objectives should be accomplished in

this phase. The output of this phase is named as a mission statement.

30

Table 2.2 continuation
Phases of the generic product development process, adapted from Ulrich and Eppinger

(2008)

Phase Description

Concept

Development

A concept is a description of the form, function, and features of the product which

are accompanied by a set of specification, an analysis of competitive products, and

justification of project. This phase needs more coordination among different

functions.

System-

level

Design

This phase pertains a definition of the product architecture and the decomposition of

the product into subsystems. The architecture is usually presented as a geometric

layout. The final assembly scheme for production system and a preliminary process

flow diagram for the final assembly process are other outputs of system-level design

phase.

Detailed

Design

Two important issues are addressed in this phase; the production cost and the robust

performance of product/process design. In addition, the complete specification of

geometric value, materials metrics, and tolerances of all of the unique parts in the

products as well as the identification of the all of the parts that should be provided

by supplier are determined. The outputs of this phase are process plan for fabrication

and assembly, tooling design, control documentation for the product.

Testing and

Refinement

In this phase, multiple preproduction prototypes are constructed and evaluated. The

various types of prototypes constructed through different phases of product

development process. There are different kinds of prototypes to identify: whether the

product satisfies the customer needs, whether it is working as designed, as well as to

test product’s reliability and performance in order to figure out necessary

engineering changes.

Production

ramp-up

In the production ramp-up phase intended production system will be implemented in

order to train workforces and identify any remaining flaws and the solution to resolve

the problems.

31

2.1.3 Concurrent engineering

Concurrent engineering (CE) is a systematic approach to integrated product development that

emphasizes the response to customer expectations. It embodies team values of co-operation, trust and

sharing in such a manner that decision-making is by consensus, involving all perspectives in parallel,

from the beginning of the product lifecycle (ESA, 2012).

Essentially, CE provides a collaborative, cooperative, collective and simultaneous engineering

working environment. The concurrent engineering approach is based on five key elements:

• a process

• a multidisciplinary team

• an integrated design model

• a facility

• a software infrastructure

In its traditional use, concurrent design is used to reduce development cost and schedule in

integrated product development (Di Dominzo, 2008). Applying concurrent engineering to a product

lifecycle results in a time compression comparing to classical sequential (waterfall) model as sketched

in Figure 2.9, which results in a faster start of production

Figure 2.9

Sequential Engineering vs Concurrent Engineering, adapted from Yazdani (1999)

32

2.1.4 Concurrent engineering for space systems

In the space sector, it is defined that concurrent engineering at the conceptual stage is carried out in a

very different way from the conventional design of manufacturing interface. Concurrent engineering

is the simultaneous and integrated engineering of all design, manufacturing, and operational aspects

of a project from the conceptual formulation of the project through project completion. It is a team-

engineering process in which all of the specialists who normally get involved in a project combine

into a multi-disciplinary task force to carry out a project. They work together, trading ideas, and

ensuring what they do early in the project (like major design decisions or changes) will not adversely

affect what they do later (like "manufacturing in" quality or supporting flight operations). All

disciplines are addressed simultaneously.

 The use of concurrent engineering practices, coupled with the application of current state-of-

the-art three-dimensional solid modeling and analysis tools, has proven to dramatically reduce new

project development times while maintaining or further improving quality, reliability, and safety

(NASA JPL, 2001).

For example, NASA Team X, a cross-functional multidisciplinary team of engineers at NASA

JPL, utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation

of mission concept designs. This advanced design team of experienced flight-project engineers is co-

located in the Project Design Center to complete architecture, mission, and instrument design studies

in real time (NASA JPL, 2015).

The Concurrent Design Facility (CDF), the European Space Agency main assessment center

for future space missions and industrial review, uses concurrent engineering methodology to perform

effective, fast and cheap space mission studies (ESA, 2014b).

2.2 System Modeling

Some of the UML based system modeling tools has already been covered above in Section 1.1 of

Chapter 2. In this section other tools and methodologies that find their application in conceptual design

phase of lifecycle will be presented.

33

2.2.1 OPM

The unnecessary complexity and software orientation of UML calls for a simpler, formal, generic

paradigm for systems development. Object Process Methodology (OPM) proposed by Dori (2011)

satisfies the essential need for a universal modeling, engineering, and lifecycle support approach under

condition of the inherent complexity and interdisciplinary nature of systems. OPM has a potential to

be integrated into a next generation MBSE tool since it provides a complete overview a system with

objects, processes, and connections it has.

OPM advocates the integration of a system's structure and behavior is a single, graphic and

textual model. OPM is used in companies such as Airbus for the roadmap creation process (Roussel

et al., 2017), meaning that it is able to help grasping systems as complex as airplanes.

In an essence, OPM is a modeling method describing which design activities to perform, what

engineering artifacts to produce, and how they are denoted. Unification of function, structure and

behavior in a single model, as well as bi-modal expression of the model via intuitive, yet formal

graphics and equivalent natural language makes OPM a good candidate to any future MBSE solution,

being the reason the section about OPM is included in this thesis.

OPM is a comprehensive patented systems modeling, engineering, and lifecycle support

paradigm (Dori, 2003). The main features of OPM are:

• unification of function, structure and behavior in a single model;

• bi-modal expression of the model via intuitive, yet formal graphics and equivalent natural

language.

Figure 2.10 illustrates a simple example of a system represented with OPM for Foundation

Constructing of a house. Here, Constructor, who is physical (has a shade) performs Foundation

Constructing, physical Raw Materials include Steel and Concrete, steel is consumed by the Steel

Frame Forming process and by having Plan as an environment for that, etc.

34

Figure 2.10

An OPM diagram example. Adapted from Dori (2003)

2.2.2 Technology integration risks

Risk estimation is a key interest for product development and technology integration programs. There

are many decision assist tools that help project managers discover and mitigate risks in a project, but

few explicitly take into account the outcomes of architecture on risk. A novel risk estimation

framework was proposed by Garg et al. (2017) that consists from considerations of the system

architecture. By way of starting with conventional project management literature, risk is described as

a mixture of likelihood and impact.

Technology Readiness Levels (TRLs) proposed by NASA (2007) are used as the measure for

likelihood, and for the reason that change propagates via interfaces, measures that relate to

connectivity are used to estimate impact. This framework became implemented with an industry

example and the data was visualized in different formats to aid in analysis.

35

The general technique that was applied by Garg et al. (2017) is illustrated and summarized in

Figure 2.11. In this method the technology integration risk of each component 𝑖 is estimated using a

common risk metric – the product of likelihood and impact as seen in Equation 1 (Project Management

Institute, 2008).

𝑅𝑖𝑠𝑘% = 𝐿% ∙ 𝐼%										(1)

𝐿% is the likelihood that the element technology needs an alternation to fulfil its function. This

is estimated through the usage of TRLs, that have been proven to be proper estimators of uncertainty

in the technology integration process (United States Government Accountability Office, 2007).

𝐼% is the severity of impact if the element is forced to alternate. The general architecture and

the element interfaces must be examined specifically to estimate the impact through the context of

change propagation.

Figure 2.11
Summary of risk calculation method, adapted from Garg et al. (2017)

The technique was implemented with an industry use-case within Analog Devices Inc. Data

obtained from Analog Devices have been used to build a view of the system architecture and develop

a network representation of the system as illustrated in steps (1) and (2) from Figure 2.9. Assoon as

36

all of the data has been gathered, impact and likelihood vectors had been calculated as in steps (3), (4)

and (5) of Figure 2.11 to obtain final risk scores (step 6). The inputs and final risk calculation are

shown in Figure 2.12 with bars in each cell to symbolize the magnitudes.

Figure 2.12
Vector representation of the components and their scores, adapted from Garg et al. (2017)

The data is graphed on a scatter plot in Figure 2.13, with the two-axis corresponding to

likelihood and severity to better visualize the risk scores.

Figure 2.13
Two-axis view of likelihood and impact, adapted from Garg et al. (2017)

In order to preserve information about interfaces, the risk score information was combined

with a Design Structure Matrix (DSM) view of the system (Eppinger and Browning, 2012). The

37

Design Structure Matrix (DSM) is a data exchange model as illustrated in the example in Figure 2.14.

In DSMs information flows are easier to capture than work flows, and inputs are simplier to capture

than outputs (de Weck, 2012).

Figure 2.14
An example of a DSM matrix of interfaces. Interpretation: task D requires information from
tasks E, F, and L; task B transfers information to tasks C, F, G, J, and K, adapted from de

Weck (2012)

In order to use the DSM view with the proposed technique, each off-diagonal mark inside the

matrix is selected to represent a risk score composed of the two interfacing components. The

calculation is performed according to Equation 2:

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑟𝑖𝑠𝑘% = max8𝐿%, 𝐿:; ∙ max8𝐼%, 𝐼:;										 (2)

Where 𝐿% and 𝐿: represent the likelihood scores for the two interfacing components; 𝐼% and 𝐼:

represent the impact scores for each element(Garg et al., 2017). Figure 2.15 allows to see the results

of this analysis. The component-level risk calculations are left as a vector in the "risk" column as an

additional reference.

38

Figure 2.15
DSM view of the system risk, adapted from Garg et al. (2017)

2.2.3 DSMV and DSM3D

Many companies that struggle with product variety and configuration management issues turn to a

module-based design approach. Although this approach is well-known to be efficient for managing

variety of a product family, current methods do not enable designers to handle both modularity and

variety within a product family. The Design Structure Matrix (DSM) has been widely used to identify

modules within a product, but its use to identify modules across a family of products has been limited.

In this context two more tools were proposed by Alizon et al. (2007) based on an extension of the

basic DSM to manage variety of an entire product family. The Variety Design Structure Matrix,

DSMV, handles variety of the product family and 3D Design Structure Matrix, DSM3D, enables visual

analysis of interfaces across the entire product family. These two tools, combined into a single

approach, enable analysis of the product family at many levels — family product, module, and

interfaces — to better specify modules and interfaces across all of the products in the family. A case

study involving a family of Kodak single-use cameras is used to demonstrate the application of these

new DSMs and accompanying cross-module and cross-interface analyses. This approach can be

applied during detailed studies as well as in the early stages of the design process.

39

Kodak, a manufacturer of photographic equipment and systems, successfully led the market

of single-use cameras by producing a product family that addressed multiple market segments. Kodak

offered a wide range of products that included combinations of key features such as waterproof,

panoramic format, flash, and high definition. Product platforming enables companies to cut costs

while offering tailored products, yet it also brings the challenge of managing variety within the family.

The DSM application proposed by Alizon et al. (2007) demonstrates two DSM techniques to

identify modules across a product family: the DSM variety (DSMV) and the three-dimensional DSM

(DSM3D). Using these two DSM techniques, one is able to study families of products, modules, and

interfaces.

The model works in two main stages using two original DSM techniques: DSMV and DSM3D.

The DSMV, shown in Figure 2.16, uses a static, binary, product architecture DSM to specify the

modules in each product containing components that have either common, variant, or unique

interfaces. The process is repeated for all the products of the family and then all these DSMV-s are

stacked to obtain the DSM3D. The DSM3D, shown in Figure 2.17, is a three-dimensional DSM

gathering all products of the family and highlighting the differences.

Figure 2.16

Clustered DSMV of Kodak Fun Saver camera with a legend of modules and interfaces, adapted
from Alizon et al. (2007)

40

Figure 2.17
Two views of the camera family DSM3D, showing several Kodak single-use camera DSM-s

overlapping in 3D, adapted from Alizon et al. (2007)

2.3 Software Review

This section of the literature review will cover various applications already implemented for systems

engineering applications with purposes similar to the ones proposed in the study.

2.3.1 Virtual Satellite

In October 2008, the German Aerospace Center (DLR) inaugurated the new Institute for Space

Systems located in Bremen, Germany. This concentrates the competences in space engineering,

enabling the DLR to build space systems in-house. Furthermore, a Concurrent Engineering Facility

(CEF) was established according to ESA’s Concurrent Design Facility (CDF) (Bandecchi et al., 2000)

to offer the very effective approach of concurrent systems engineering. Additionally, the need for a

tool supported process for the simulation-based space system development based on a modern and

flexible software infrastructure was identified. The Virtual Satellite project aims at the definition of

this process and the implementation of the needed infrastructure (Schumann et al., 2008).

41

There are general issues of inter-domain communication and understanding of the Virtual

Satellite tool. It is believed that a tool which uses CEDESK as a parametric modeling tool could have

the potential to overcome those issues, since CEDESK can interact with domain-specific models and

tools. There is also an issue of understanding: before an expert starts using Virtual Satellite, he or she

has to spend some time training since the GUI does not provide intuitive interaction.

Figure 2.18 illustrates the user interface of VirSat and Figure 2.19 describes a system

architecture of Virtual Satellite, which visualize the system model and a connection to a virtual reality

environment. The system proposed has high potential since it could improve the inter-domain

communication, facilitate feasible design phase and provide more detailed and concrete models for

the next design phases (Tsykunova, 2016).

The VirSat Client operates with documents called Visualization Models. These documents are

being transferred to the VR environment of VirSat throughout the process of satellite design, providing

a tool for both 3D Visualization and 3D Interaction.

VirSat has certain disadvantages: it has no integration of third-party tools in the architecture

and is not an open-source software.

Figure 2.18
3D Visualization and interaction of the system model in the software Virtual Satellite, adapted

from Deshmukh et al. (2015)

42

Figure 2.19
Architecture of Virtual Satellite exchanging system model information within the Concurrent

Engineering Facility as well as data interaction in a VR environment, adapted from
Deshmukh et al. (2015)

43

2.3.2 IDM

The French National Centre for Space Studies has its own concurrent design facility called Centre

d’Ingénierie Concourante (CIC). For the build-up of system budgets and the exchange of parameters

between disciplines, CIC makes good use of the Integrated Design Model (IDM) tool provided by the

Concurrent Design Facility of ESA and resulting from close cooperation between both agencies

(Bousquet et al., 2005).

Figure 2.20 represents the IDM architecture. The IDM is the central system budget tool

originally developed by ESTEC and based on Excel® spreadsheets. All discipline specific tools

gravitate around IDM with the Data Exchange process being a core of it.

Figure 2.20
IDM architecture, adapted from Bousquet et al. (2005), courtesy of ESA

44

Table 2.3 lists the disciplines generally involved in a study within CIC, and their principal

design tools. The name of the tool is underlined when a direct link has or should be established with

the IDM.

Table 2.3
CIC’s discipline and tool list, adapted from Bousquet et al. (2005)

System IDM

AOCS Matlab

CAD design Catia V5

Comms Access Database

Data Handling Obade

Mission analysist & simulation Opale, STK, Excel

Power Saber

Propulsion Excel database

Risk Failcab, Cabtree, Supercab, Gencab

Structures Patran, Nastran

Thermal Thermica

Since IDM is based on Excel, there might be some interconnection issues relevant to all Excel-

based software products. There are many reports on Excel being crashed, frozen, corrupting files, etc.

Most of those problems require the user to switch to Excel and to resolve the issues manually

(Microsoft Support, 2016). IDM has no integration with third party tools and is not open-source.

2.3.3 Cameo Systems Modeler

It was decided to review Cameo Systems Modeler as a cross-platform collaborative MBSE

environment, which provides smart, robust, and intuitive tools to define, track, and visualize all

aspects of systems in the most standard-compliant SysML models and diagrams. The environment

enables systems engineers to: Run engineering analysis for design decisions evaluation and

requirements verification Continuously check model consistency Track design progress with metrics

System models can be managed in remote repositories, stored as standard XMI files, or published to

documents, images, and web views to address different stakeholder concerns (NoMagic).

45

The architecture of Cameo Systems Modeler provided in Figure 2.21 shows that the tool is

capable of bringing many other tools around it. Cameo Systems Modeler uses many tools of the

MagicDraw origin, yet it has many third-party components in it.

Figure 2.21
Architecture of Cameo Systems Modeler, adapted from NoMagic (2017)

NoMagic provides many tools of their own design, but still depends a lot on external software.

There is a disadvantage in this: the more external tools are being used, the more licenses should be

provided and more version control needed (Spangelo et al., 2013).

46

2.3.4 CEDESK

As was covered above, one of the efficient approaches to design a complex system is concurrent

engineering. It is proposed to find a tool for concurrent conceptual design. One of such tools is

CEDESK developed by Knoll and Golkar (2016).

CEDESK is an open-source tool to facilitate co-located collaborative model-based conceptual

design of complex engineering systems. This type of tool is also known as data exchange for

concurrent engineering studies. Multidisciplinary design teams can use CEDESK to facilitate their

work together by building shared parametric models of their system of interest (Knoll and Golkar,

2016).

CEDESK aims to bring concurrency to conceptual design and to solve the problem of

designing complex systems composed by multiple subsystems referring to different disciplines. Costs

committed on the conceptual design stage of lifecycle are equal to 70%, while only 8% are spent as

illustrated in Figure 1.1.

CEDESK mostly focuses on its primary function: exchange parametric model information

between discipline experts. However, visualization of basic three-dimensional geometry is not

embedded into CEDESK.

CEDESK allows multiple users to work concurrently on the design of a system, while

distributing design authority over subsystems among discipline experts. Figure 2.22 shows the user

interface used by discipline experts to collaborate on a system model. The structure sub-window

represents the systems as a tree model. The parameters sub-window lists all parameters in a selected

subsystem. It is also possible to see all linkages for each parameter and subsystem, making it a good

tool for system representation.

47

Figure 2.22

Starting screen of CEDESK

48

CHAPTER 3

APPROACH

It is proposed to develop a tool that could represent interfaces in a 3D DSM view of impact, likelihood,

and risk scores using 3D Modeler. Interfaces are proposed to be inherited from MySQL databases

used in CEDESK, which makes the representation to be based on a parametric model of a system.

C3D Modeler is capable of representing geometry of a system being developed. It is believed that the

proposed software prototype has the potential to become a next generation MBSE platform, capable

of representing a geometrical model of the system in 3D with supporting tools orbiting the model.

Figure 3.1 represents the structure proposed for the next generation MBSE software which could

eventually arise from the results of the study. It is proposed that this software should be represented

as a Concurrent Conceptual Design and Demonstrator Assessment Platform consisting of a geometric,

parametric, and system modeling tool. In the proposed software prototype, it was suggested to

implement CEDESK as a parametric modeling tool, C3D Modeler as a geometric modeling tool, and

DSM methodology proposed by Garg et al. (2017) as a way to represent a system and interfaces inside

of it. Other tools could include many other tools to facilitate concurrent conceptual design, such as

Microsoft Excel. However, it must be noted that a variety of tools could bring problems with

versioning and licensing. This kind of platform could potentially become in the next generation MBSE

software since the proposed tool is supposed to be able to represent the system being developed with

modeling tools orbiting it.

Figure 3.1

Proposed next generation MBSE platform structure

49

Figure 3.2 represents the approach used in this thesis project. Firstly, a tool for parametric

modeling has to be chosen. It is proposed to fill the need in a concurrent conceptual design tool by

CEDESK developed by Knoll and Golkar (2016). CEDESK is a tool, which is aimed to support the

concurrent conceptual phase and can most effectively work with behavioral data.

Data used in initial phases of product development is predominantly behavioral in nature, that

is, a large part of this data does not refer to the geometrical parameters of the system. However, current

product lifecycle management (PLM) systems are based on the geometrical master model concept and

thus work best for the detailed design, where the data are mostly geometric. Thereunder, there is still

a gap between parametric and geometric modelling which has to be eventually filled.

Thus, a tool for geometric modeling is required. As a way to fill the gap between parametric

and geometric modelling, it is proposed to integrate the C3D solid modeling kernel with MySQL

databases used in CEDESK in a software prototype which has a potential to enhance demonstrator

feasibility assessment by representing DSM matrices in 3D.

Figure 3.2

The approach proposed to achieve the target of this thesis project

3.1 Parametric modeling tool

It is proposed to fill the need in concurrent conceptual design tool by CEDESK developed by Knoll

and Golkar (2016) which was briefly covered in Section 5.4 of Chapter 2.
The architecture shown in Figure 3.3 has been implemented for the European Space Agency

(ESA) in the Open Concurrent Design Tool (OCDT) (ESA, 2014a), which use is limited to ESA

member states. The commercial version of it called Concurrent Design Platform (CDP) (Fijneman

and Matthyssen, 2010). For a similar purpose, the German Aerospace Agency (DLR) developed

Virtual Satellite (VirSat) (Schaus et al., 2010), and the Jet Propulsion Laboratory developed Open

Identifying a
parametric

modeling tool

Identifying a
geometric

modeling tool

Designing a
software

architecture

Developing a
methodology

for
demonstrator

assessment

Implementing
the

methodology in
a software
prototype

Assess results

50

Model Based Engineering Environment (OpenMBEE) (NASA JPL, 2016) (see Table 3.1 for a

comparison of commonly used tools for conceptual design studies in space agencies).

Figure 3.3
Tool architecture – a central data exchange connecting all domain models, adapted from

Bandiccheri et al. (2000)

Table 3.1
Comparison of tools for conceptual design in aerospace, adapted from Knoll and Golkar

(2016)

51

3.2 Geometric modeling tool

Since geometrical representation is needed to represent a model in the center of a system and interfaces

between subsystems, it is proposed to use C3D Modeler as a tool for it. C3D Modeler can be used to

create stand-alone applications which is crucial for size-reduction of any future MBSE software. It

has the potential to be a base for a VR tool as well. The objects, methods, and algorithms used by the

C3D modeling kit are described by Golovanov (2014).

C3D Labs is a company aimed for developing and promoting its geometrical kernel. Being the

most popular geometrical modelling kernel in Russia, C3D Toolkit is gaining customers worldwide

as well. Customers of C3D Labs are CAD/CAM/CAE developers and various institutions, such as the

Skolkovo Institute of Science and Technology. Today, C3D Labs is a part of ASCON group and a

resident of the Skolkovo Innovation Center.

It was proposed to implement the C3D Kernel and C3D Vision in order to develop a web-

based application for representation and assessment of a demonstrator. The following tasks are

accomplished:

1. Building the software architecture.

2. Development of a framework with the C++ programming language on programming level.

3. Development of a methodology for demonstrator assessment.

4. Implementation of the developed methodology in a software prototype using the C3D

geometrical kernel.

In C3D Toolkit, a geometrical object describes the form of the modeled object. Geometric

objects include curves, surfaces, bodies as well as topological objects that describe geometric

properties that don't depend on quantitative features and describe permanently interconnected points

in 3D space. There are two-dimensional and three-dimensional geometric objects. Two-dimensional

objects are used to work in definition areas of surface parameters, as well to work with planes of local

3D coordinate systems.

The C3D geometric kernel operates with geometric model objects shown in Figure 3.4 (C3D

Labs, 2017). Such variety of operable geometric objects implies in the high potential for MBSE

software as well. For instance, MbPlaneInstance can be used to represent a three-dimensional plot,

diagram, or DSM.

52

Figure 3.4
Geometric model object operated by C3D geometric kernel, adapted from C3D Labs (2017)

53

CHAPTER 4

RESULTS

4.1 Proposed software prototype architecture

Firstly, it was decided to develop a software architecture, in order to build the bridge between design

requirements and technical software requirements by understanding use cases, and then finding ways

to implement those use cases in the software. The goal of an architecture is to identify the requirements

that affect the structure of the application (NASA, 2014).

It is possible that a user might need to work with multiple documents, so it was chosen to use

the multi-document interface (MDI) structure as a base of the application. All documents are proposed

to be accessed within a single framework on the top level of application architecture as illustrated in

Figure 4.1.

Figure 4.1
The top level of the architecture

Figure 4.2 represents the second level of architecture, which is important to make links inside

the application clearer. Inside the architecture, there is a DLL with a GUI and Template Plugin. The

GUI is responsible for HMI, while the Template Plugin allows creation of new documents with

different types. The GUI, being adapted from the C3D testing application, consists of the Framework

with various tools such as menu, statusbar, toolbar, etc. The Template Plugin is controlled by the

Framework and able to store and change data in the document. It also interacts back with the

54

Framework through the Interface. The Interface sends signals to the Registrator Plugins, which sends

signals with the Framework to the application itself. The Python script interacts with the Document

through the Template Plugin and retrieves data from MySQL databases. The reason for implementing

the Python script instead of coding purely in C++ is covered in Section 2.4 of this chapter.

Figure 4.2
The second level of the architecture

The block diagram provided in Figure 4.3 shows the interfaces between the Window and the

Manager. The Model, which basically is the data used in projects, may be represented as the

Document, which could be seen in the Window by the user. The Manager Editor sends signals to the

General Manager in order to make changes in the Document.

55

Figure 4.3
Block diagram for representing the Manager Editor interface with the Window

4.2 Development environment

4.2.1 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used

to develop computer programs for Microsoft Windows, as well as web sites, web apps, web services

and mobile apps. Visual Studio uses Microsoft software development platforms such as Windows

API, Windows Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight.

It can produce both native code and managed code (Webster, 2017).

C3D kernel is written in C++ and Microsoft Visual Studio was chosen since it allows use the

C++ programming language in a professional way.

56

4.2.2 CMake

CMake is an extensible, open-source tool that constructs the build procedure in an operating system

and in a compiler-independent way. Unlike many cross-platform systems, CMake is designed fo use

in conjunction with the native build environment, which is Microsoft Visual Studio in this case.

Simple configuration documents located in each source directory (called CMakeLists.txt documents)

are used to generate standard build documents (e.g., makefiles on Unix and projects/workspaces in

Windows MSVC) which are used in the usual way. CMake can generate a native build environment

that will compile source code, create libraries, generate wrappers and build executables in arbitrary

combinations. CMake supports in-place and out-of-place builds and may therefore support multiple

builds from a single source tree. CMake additionaly supports static and dynamic library builds.

Another function of CMake is in generating a cache document that is designed for use with a graphical

editor. For instanse, when CMake runs, it locates documents, libraries, and executables, and can

encounter optional build folders. This information is accumulated into the cache, which may be

modified by the user before the generation of the native build documents (CMake, 2017).

CMake is designed to assist with complex directory hierarchies and applications dependent on

numerous libraries. For instance, CMake aids projects consisting of more than one toolkits (i.e.,

libraries), in which each toolkit could contain numerous directories, and the application relies upon

on the toolkits plus extra code. CMake also can manage conditions in which executables ought to be

built with the intention to generate code which is then compiled and linked right into a final

application. Since CMake is open source, and has a simple, extensible design, CMake may be

extended as required to support new features. The build procedure is managed through creating one

or more CMakeLists.txt documents in each folder (which includes subfolders) that make up a project.

Each CMakeLists.txt includes one or more commands. Each command has the form COMMAND

(args…) in which COMMAND is the name of the command, and args is a white-space separated list

of arguments. CMake offers many pre-defined commands and presents an interface for including user-

defined commands. Furthermore, the advanced user can upload other makefile generators for a

specific compiler/OS combination.

Figure 4.4 shows the user interface of CMake used in the development of the software

prototype, where the source code is a folder with C++ and header files used to build the solution;

binaries are the resulting software prototype which is the result of compiling the source code. The

CMake GUI has a table for user-defined variables which have a name and a value. The connection to

57

the C3D libraries are done through this variable interface, as well some general configuration

properties of the program.

Figure 4.4
User interface of CMake

4.2.3 SourceTree

Agile methods grew out of the real-life project experiences of leading software professionals who had

experienced the challenges and limitations of traditional waterfall development on project after

project. The approach promoted by agile development is in direct response to the issue associated with

traditional software development both in terms of overall philosophy as well as specific processes

(McLaughlin, 2005).

Agile development, in its simplest form, offers a lightweight framework for helping teams,

given a constantly evolving functional and technical landscape, maintain a focus on the rapid delivery

58

of business value (i.e., bang for the buck). As a result of this focus, the benefits of agile software

development are that organizations are capable of significantly reducing the overall risk associated

with software development.

In particular, agile development accelerates the delivery of initial business value, and through

a process of continuous planning and feedback, is able to ensure that value continues to be maximized

throughout the development process. As a result of this iterative planning and feedback loop, teams

are able to continuously align the delivered software with desired business needs, easily adapting to

changing requirements throughout the process. By measuring and evaluating status based on the

undeniable truth of working, testing software, much more accurate visibility into the actual progress

of projects is available. Finally, as a result of following an agile process, at the conclusion of a project

is a software system that much better addresses the business and customer needs (VersionOne, 2005).

Figure 4.5 displays the differences between agile and waterfall development processes. By

delivering working, tested, deployable software on an incremental basis, agile development delivers

increased value, visibility, and adaptability much earlier in the life cycle, significantly reducing project

risk.

Figure 4.5
Agile development value proposition, adapted from VersionOne (2005)

It was decided to use SourceTree as a tool providing agile development to the study.

SourceTree is a free Git client for Windows and Mac for programmers working with Git in

development. It provides a visual interface between a user and Git avoiding a command line. The

59

reason for choosing SourceTree as a Git client for the study is in the desire to make the study agile by

branch management, working copies, and branch history (Donnelly, 2015).

Figure 4.6 shows the user interface of SourceTree used in the development of the software

prototype with a graph of commits with branches and commit descriptions. Each commit has a date

stamp, author, commit ID, its parents. On the bottom right-hand side of the user interface, there is a

code viewer which allows a user to see and analyze changes in each file in the commit. Deleted rows

of code are highlighted with red color and has a ‘minus’ sign at the beginning of each deleted row,

while added rows of code are highlighted with green color and has a ‘plus’ sign at the beginning of

each added row.

Figure 4.6
User interface of SourceTree

60

4.2.4 MySQL Connector/Python

CEDESK operates with MySQL databases and is written in the Java programming languages while

C3D Modeler is written in the C++ programming language. Since it was decided to develop a software

prototype in the scope of this thesis, there has to be an interface between them. MySQL provides

standards-based drivers for JDBC, ODBC, and .Net enabling developers to build database applications

in their language of choice. In addition, a native C library allows developers to embed MySQL directly

into their applications (MySQL, 2018). MySQL developed MySQL Connector drivers for the

following several programming languages and environments:

• ADO.NET Driver for MySQL (Connector/NET)

• ODBC Driver for MySQL (Connector/ODBC)

• JDBC Driver for MySQL (Connector/J)

• Node.js Driver for MySQL (Connector/Node.js)

• Python Driver for MySQL (Connector/Python)

• C++ Driver for MySQL (Connector/C++)

• C Driver for MySQL (Connector/C)

• C API for MySQL (mysqlclient)

At first, from this list the C++ Driver for MySQL appeared to be the most appropriate option

to be implemented in the software prototype since C3D Modeler is written in C++. However, a

preliminary study discovered, that the C++ Driver requires a significant amount of external

dependencies other than the C++ standard library and developing the software prototype with the C++

Driver would take a significant amount of time to adjust and implement it.

From the list of the drivers above, the Python Driver for MySQL stands out as one the few

drivers without any external dependencies other than the standard required library – the standard

Python library. Moreover, Python has a large community of developers, resulting in a lot of

documentation available online. Thus, it was decided to develop a Python script which would be called

by the program whenever a connection to a MySQL database requires to be established.

61

4.3 Use case

In order to analyze the performance of the developed application, it is important to perform a use case

analysis. For this purpose, a dataset from a feasibility study of a project supported by the CEDESK

application: the LaserNaut satellite project. This representative data of a concurrent conceptual design

study, was generated by students and researchers from Skoltech participating in Satellite Engineering

projects. The satellite design included the following conventional subsystems: Attitude Determination

and Control System (ADCS), Communication, Power, Orbit, Thermal, and Structure as well as an

Optical payload. Input and output data of each subsystem were extracted from the CEDESK database

for the analysis (Fortin et al., 2017). A solid model of the satellite made in SolidWorks is presented

in Figure 4.7 and Figure 4.8.

Figure 4.7
3U CubeSat – Tyvak Endeavor, adapted from Knoll et al. (2016).

62

Figure 4.8
3U CubeSat – Tyvak Endeavor without the side panels and the solar panels, adapted from

Knoll et al. (2016)

4.4 Application

4.4.1 Implementation

It was suggested develop the prototype application using the C3D geometrical modeling kernel and

basing on the architecture presented in Section 1 of Chapter 4. Appendix A of this thesis includes

information and an example relevant to using C3D Kernel in the study.

 After the software and all its sub-functions are specified, the implementation phase starts. Here

coding is a straightforward process when the specifications and designs are well made. Coding process

usually includes some code reviews, mainly intended for analyzing that the code is a well commented

and follows the good programming practices.

As covered in Section 2.4 of Chapter 4, it was decided to implement the Python script for

establishing the connection between the software and MySQL databases. Appendix B of this thesis

includes the code for the Python script used in the software prototype with relevant comments and an

example of data retrieved.

63

For the implementation, a new folder in a comfortable working position was created to contain

all the source and built code of the software prototype.

It was decided to use the 2017 version of Microsoft Visual Studio as the development

environment. The C3D Modeler version was chosen to correspond to the development environment.

Include, Debug, and Release files of the application were adapted from the testing application

of C3D Modeler. Source files were adapted and expanded with new functionality relevant for the

study.

CMake files were adapted and expanded with new functionality relevant for the study.

Appendix C of this thesis includes the code of one of the few CMake files used for the development

of the software prototype. Considering that the software prototype is located in directory

\SOFTWARE_PROTOTYPE, the directories for the source code and for the built binaries are

\SOFTWARE_PROTOTYPE\Source and \SOFTWARE_PROTOTYPE\Build respectively. After

that the project is configured using CMake. The generator for this project is specified to be Microsoft

Visual Studio 2017. After that, the project files are generated using CMake and can be opened directly

from CMake.

In the project, there have been developed various expansions of the original C3D code that

were relevant for the study. Appendix D of this thesis includes excerpts the C++ code used for 3D

DSM plotting using C3D Modeler.

4.4.2 Testing

As the result of the study, the software prototype was made. The initial screen is shown in

Figure 4.9. It has a toolbar with quite common functions, such as creation of a new file, showing all

windows, etc. View window can show one or more sub-windows since the MDI structure was chosen.

It was decided to build this application on top of the test application provided by C3D Labs. Still, the

main idea of this application is to represent the possibility to represent data from MySQL databases

in form of DSM matrices. It is not supposed to be a commercial software product ready to be sold and

implemented.

64

Figure 4.9

Initial screen of the developed software prototype.

In order to provide the user with an access to the developed features of the software prototype,

some new elements of the GUI were developed. As illustrated in Figure 4.10 the File menu has two

specific buttons: New MySQL connection and New risk assessment. Clicking on New MySQL

connection launches the process of connecting to a MySQL database using user credentials for it.

Those credentials consist of a regular set of parameters needed to access a MySQL database – a

username, a password, a host name, and a database name (Figure 4.11, a – d).

Figure 4.10
Part of the File menu of the developed software prototype

65

(a) (b)

(c) (d)

Figure 4.11
Windows for entering user credentials. (a) Window for entering a username. (b) Window for

entering a password. (c) Window for entering a host name. (d) Window for entering a
database name.

After performing the MySQL access procedures, the software prototype performs access the

Python script which accesses a MySQL database using the entered credentials and retrieves data from

the database. An example SQL query for retrieving data consisting of parameter dependencies in the

LaserNaut cubesat is provided below:

CREATE OR REPLACE VIEW parameter_dependencies AS
SELECT
y.id AS system_id,
y.`name` AS system_name,
s1.id AS target_subsystem_id,
s1.`name` AS target_subsystem_name,
p1.id AS target_parameter_id,
p1.`name` AS target_parameter_name,
p1.`value` AS target_parameter_value,
u.`name` AS target_parameter_unit,
p2.id AS source_parameter_id,
p2.`name` AS source_parameter_name,
s2.id AS source_subsystem_id,
s2.`name` AS source_subsystem_name
FROM parametermodel p1
JOIN unit u ON p1.unit_id = u.id
JOIN subsystemmodel s1 ON p1.parent_id = s1.id
JOIN systemmodel y ON s1.parent_id = y.id
JOIN parametermodel p2 ON p2.id = p1.valueLink_id
JOIN subsystemmodel s2 ON s2.id = p2.parent_id
WHERE p1.valueLink_id IS NOT NULL;

66

SELECT
`target_subsystem_id`,
`target_subsystem_name`,
`source_subsystem_id`,
`source_subsystem_name`,
COUNT(source_parameter_id) AS linked_parameters
FROM parameter_dependencies
WHERE system_name = \"LaserNaut\"
GROUP BY `target_subsystem_name` , `source_subsystem_name`;

The query above returns a set of data that can be interpreted as provided in Table 4.1. The

number of linked parameters between subsystems can be interpreted as the impact score used in the

method proposed by Garg et al. (2017) which was discussed above in Section 2.2 of Chapter 2 with

the literature review.

Table 4.1
Example dataset used for the case study

Target Subsystem Source Subsystem Linked

parameters ID Name ID Name

1 17840 Bio Payload 17838 Mission +

Programmatics

1

2 17840 Bio Payload 17842 Power + Thermal 2

3 17840 Bio Payload 17841 Structure 7

4 17845 OBDH 17840 Bio Payload 1

5 17845 OBDH 17846 Optical Comms 1

6 17846 Optical Comms 17843 AOCS 1

7 17846 Optical Comms 17877 Orbit 2

8 17842 Power + Thermal 17846 Optical Comms 2

9 17842 Power + Thermal 17877 Orbit 4

10 17844 RF Comms 14845 OBDH 1

11 17844 RF Comms 17846 Optical Comms 1

12 17844 RF Comms 17877 Orbit 2

67

Table 4.1 continuation
Example dataset used for the case study

Target Subsystem Source Subsystem Linked

parameters ID Name ID Name

13 17841 Structure 17840 Bio Payload 4

14 17841 Structure 17838 Mission +

Programmatics

1

15 17841 Structure 17846 Optical Comms 4

16 17841 Structure 17877 Orbit 3

17 17841 Structure 17842 Power + Thermal 1

After importing all the data, the program uses it to represent a DSM on the screen as a three-

dimensional histogram. This 3D histogram uses data and creates a 3D bar graph of the number of

linked parameters between subsystems in a two-dimensional grid. This 3D histogram is considered to

be a 2D array of integer amount linked parameters as shown in Table 4.2. Figure 4.12 illustrates the

3D DSM view of the impact scores plotted by using the data from Table 4.2.

Table 4.2
DSM view of the impact scores (or linked parameters) between 9 subsystems

Subsystem # 1 2 3 4 5 6 7 8 9

Mission +
Programmatics 1 1 1

Bio Payload 2 4 1

Structure 3 7

Power +
Thermal 4 2 1

AOCS 5 1

RF Comms 6

OBDH 7 1

Optical Comms 8 4 2 1 1

Orbit 9 3 4 2 2

68

Figure 4.12
3D DSM view of the impact scores (or linked parameters) between 9 subsystems

User can perform a New risk assessment from the File menu after performing all required

manipulations with the impact scores. The result of this operation is a new DSM view of the interfaces

between subsystems, now with the risk scores calculated by the method proposed by Garg et al. (2017)

which was discussed above in Section 2.2 of Chapter 2 of the literature review and can be described

by Equation 2:

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑟𝑖𝑠𝑘% = max8𝐿%, 𝐿:; ∙ max8𝐼%, 𝐼:;										 (2)

The risk scores are being normalized afterwards to the score of 100 being corresponding to the

highest interface risk. This new 3D histogram is considered to be a 2D array of the risk scores as

shown in Table 4.3. Figure 4.13 illustrates the 3D DSM view of the risk scores plotted by using the

data from Table 4.3. In this particular example, all the technologies of the subsystems are considered

to have TRL 9.

A potential user has a possibility to retrieve information about each one of the interfaces by

clicking on it in the DSM view with right mouse button. For instance, if the user decides to retrieve

information from an interface between Bio Payload being the target subsystem and Structure being

the source subsystem, they could click with a right mouse button on it and a sub-window with the

information appears as shown in Figure 4.14. This information includes names of the target and source

subsystems with their IDs in brackets, its impact score, TRL, and risk score.

69

Table 4.3
DSM view of the risk scores

Subsystem # 1 2 3 4 5 6 7 8 9

Mission +
Programmatics 1 14 14

Bio Payload 2 57 14

Structure 3 100

Power +
Thermal 4 29 14

AOCS 5 14

RF Comms 6

OBDH 7 14

Optical Comms 8 57 29 14 14

Orbit 9 43 57 29 29

Figure 4.13
3D DSM view of the risk scores between 9 subsystems. The arrow here highlights one of the

interfaces for the case study

70

Figure 4.14
Information about the interface highlighted in Figure 4.11 in a separate sub-window

Since it was decided to implement an MDI architecture of the software prototype, user can

open several windows with DSM views of impact scores and risk scores. C3D Converter uses the

following formats to exchange geometric model data with other systems: STEP, IGES, SAT (ACIS),

X_T, X_B (Parasolid), STL, VRML, and JT. STEP, IGES, SAT, X_T, X_B formats transmit the

boundary representation of the geometric model. STL and VRML formats transmit the polygonal

representation of the geometric model. JT format transmits the hybrid representation (both) of the

geometric model. STEP format supports transmit of product and manufacturing information (PMI)

(C3D Labs, 2017). Therefore, the user can also open a 3D model of the systems. A user interface in

this case appears as illustrated in Figure 4.15.

Figure 4.15

User interface of the developed software prototype showing the MDI structure implemented in
it

71

Chapter 5

FUTURE WORK AND CONCLUSIONS

5.1 Avenues of future work

In this section, further research ideas and rooms for improvement will be presented, some of which

had to be excluded from this thesis.

Firstly, it would be interesting to see further case studies for the software prototype developed.

It would be interesting to further develop the software prototype to enhance concurrent

conceptual design process by using C3D Kernel and C3D Vision features.

It was suggested by one of the R&T team members at Airbus, that the frustration and issues

the concurrent design team faced, where things that people do not have appropriate and convenient

tools to visualize a system with all the parameters included in it. Thus, it would be interesting to

develop a new interface and methodology for data visualization.

Since DSM matrices become larger and more complex, it would be interesting to implement

big data analysis and data sciences in order to better identify, capture, and manage information.

It would be interesting to implement DSMV and DSM3D for in the software prototype, since they

provide a way to embrace a whole family of products.

It would be interesting to make a full real-time integration of CEDESK with C3D Modeler.

The difference in the programming languages between them is an obstacle to achieving that, yet it is

feasible in a longer perspective.

It would be interesting to switch to VR to make using DSMs in the conceptual design stage of

life cycle more interactive.

It would be interesting to implement the software prototype in a web-based tool/add-on in

order to make it available all over the globe.

Figure 5.1 represents a concept of a Next Generation MBSE platform that could emerge from

the developed software prototype. This concept has a 3D model of a demonstrator model under

development with CEDESK, Opcat, DSM viewer and a plot viewer orbiting it. It would be interesting

to see this platform operational.

72

Figure 5.1
A concept of a Next Generation MBSE platform

The developed software prototype allows modelling and evaluation of a demonstrator by

representing a 3D model of a system being developed and interfaces in it as 3D DSM matrices.

Implementing the OPM methodology proposed by Dori (2003) and covered in Section 2.1 of Chapter

2 could allow a systems designer to even better analyze systems with large amounts of interfaces on

their conceptual design stage. This could be crucial for enhancing the development of a software

prototype of Digital Factory – a new generation of adaptable factory engineered with knowledge-

based engineering systems, which is believed to play a significant role in establishing of the 4th

Industrial Revolution as a cyber-physical system. The Digital Factory concept could result to

extensively configuration, model, simulate, assess and evaluate items, procedures and system before

another industrial facility is constructed or any alteration is really completed on a current framework,

keeping in mind the end goal to enhance quality and lessen the time (Canetta et al, 2011).

5.2 Conclusions

The main goal of the research was to study, adapt, and implement some of the current DSM techniques

in a software prototype to allow a concurrent engineering design team to represent data from MySQL

73

databases from CEDESK in a view of three-dimensional DSM matrices. A case study was conducted

using the developed software prototype.

The software prototype is not supposed to be a commercial software product ready to be sold

and implemented yet, although there might be a potential for that which has to be identified.

The delimitations of the study are that only one main use-case is studied in detail. The results

might therefore not be universally applicable to other use-cases. The timeframe of the study was 9

months, resulting in a great amount of data and ideas arising, but not all aspects and perspectives could

be accommodated within the scope of the master thesis study.

As a result, it is believed that adding the third dimension to DSM has the potential to allow a

systems engineer to comprehensively analyze interfaces in the system, especially in our world where

systems become more and more complex. Moreover, a concurrent conceptual design team using the

software prototype can experience a more interactive process by developing a parametric model of a

system using the CEDESK interface and being able to see a 3D geometrical model of results of their

cooperative work, along with DSMs to have a better comprehension of system interfaces and risks in

them. It is believed that the developed software prototype has the potential to become the next

generation MBSE platform, capable of representing a geometrical model of the system in 3D with

supporting tools orbiting the model.

74

REFERENCES

Alizon, F., Moon, S., Shooter, S. B., and Simpson, T. W. (2007). Three-Dimensional Design

Structure Matrix with Cross-Module and Cross-Interface Analyses. In: ASME International

Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, Volume 6: 33rd Design Automation Conference, Parts A and B ():941-948.

doi:10.1115/DETC2007-34510. Available at:

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1604805

Bandecchi, M., Melton, B., Gardini, B., et al. (2000). The ESA/ ESTEC concurrent design facility.

In: Proceedings of the EUSEC, pp. 329–336. Available at:

http://swe.ssa.esa.int/TECEES/spweather/esa_initiatives/spweatherstudies/CDF_study/cdf_pape

r.pdf (accessed 3 April 2018)

Bellgran, M., and Säfsten, K. (2009). Production Development: Design and Operation of

Production Systems. Springer, London, UK, ISBN 9781848824942

Bousquet, P. W., Benoist, J., Gonzalez, Fr., Gillen, Ph., Pillet, N., Sire, J.– P., and Vigeant, F.

(2005) Concurrent Engineering at CNES, pp 1–11. doi: 10.2514/6.IAC–05–D1.3.06

C3D Labs (2017) C3D Developer Manual, p. 412.

C3D Labs. C3D Modeler. Available at: http://c3dlabs.com/ru/products/modeler/ (accessed 5

November 2017)

Canetta, L., Redaelli, C., and Flores, M. (2011). Digital Factory for Human-oriented Production

Systems (1st ed.). London: Springer-Verlag London Limited.

Chakrabarti, A., and Srinivasan, V. (2009). SAPPhIRE – an Approach to Analysis and Synthesis. In:

International Conference on Engineering Design (ICED09), Palo Alto, DS 58–2.

Charney, R. (2005). Programming Tools: UML Tools. Available at:

https://www.linuxjournal.com/article/8334 (accessed 26 May 2018)

Cloutier, R. and Bone, M. (2010). Compilation of SysML RFI – Final Report. Stevens Institute of

Technology. Available at:

http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:omg_rfi_final_report_02_20_2

010-1.pdf

CMake. (2017). CMake. Available at: https://cmake.org/ (accessed 31 July 2017)

Davis, T. G. (2010). Java and Mac OS X. Indianapolis, IN: Wiley.

75

Deshmukh, M., Wolff, R., Fischer, P., and Gerndt, A. (2015). Interactive 3D Visualization to

Support Concurrent Engineering in the Early Space Mission Design Phase, CEAS 2015, paper

no. 020, pp. 1–8.

Di Domizio, D., and Gaudenzi, P. (2008). A Model for Preliminary Design Procedures of Satellite

Systems. Concurr. Eng., vol. 16, no. 2, pp. 149–159, 2008.

Donnelly, J. (2015). 5 reasons to use SourceTree for Git. Available at:

https://sagittarius.agency/blog/5-reasons-to-use-sourcetree-for-git (accessed 13 May 2018)

Dori, D. (1995). Object-Process Analysis: Maintaining the Balance between System Structure and

Behavior. Journal of Logic and Computation. 5 (2): 227–249. doi:10.1093/logcom/5.2.227

Dori, D. (2003). Object-Process Methodology and Its Application to the Visual Semantic Web.

Presentation, Chicago.

Dori, D. (2011). Object-process Methodology: A Holistic Systems Paradigm. New York: Springer.

Ebrahimi, S. M. (2011). Concurrent Engineering Approaches within Product Development

Processes for Managing Production Start-up phase. (Master). Jönköping University.

Enterprise Architecture. (2009). Sparx Systems Enterprise Architect. Available at:

http://iea.wikidot.com/sparxsystems-enterprise-architect (accessed 26 May 2018)

Eppinger, S., and Browning, T. (2016). Design Structure Matrix Methods and Applications (pp. 74-

78). Cambridge: MIT Press.

European Space Agency (ESA). (2012). What is concurrent engineering? Available at:

http://www.esa.int/Our_Activities/Space_Engineering_Technology/CDF/What_is_concurrent_e

ngineering (accessed 13 April 2018)

European Space Agency (ESA). (2014a). Open concurrent design tool. Available at:

https://ocdt.esa.int/ (accessed 20 June 2016).

European Space Agency (ESA). (2014b). CDF. Available at:

http://www.esa.int/Our_Activities/Space_Engineering_Technology/CDF (accessed 26 May

2018)

Fortin, C., McSorley, G., Knoll, D., Golkar, A., and Tsykunova, R. (2017). Study of Data Structures

and Tools for the Concurrent Conceptual Design of Complex Space Systems. In: Proceedings of

the 14th IFIP WG 5.1 International Conference, PLM 2017 Seville, Spain, July 10–12.

Fijneman, M. and Matthyssen, A. (2010) Application of concurrent design in construction,

maritime, education and other industry fields. In: Proceedings of the 4th international workshop

on system & concurrent engineering for space applications (SECESA 2010), Lausanne, 9 June.

76

Garg, T., Eppinger, S., Joglekar, N., and Olechowski, A. (2017). Using TRLs and system

architecture to estimate technology integration risk. In: Proceedings of the 21st International

Conference on Engineering Design (ICED17), Vol. 3: Product, Services and Systems Design,

Vancouver, Canada, 21.–25.08.2017.

Golovanov, N. (2014). Geometric Modeling. CreateSpace Independent Publishing Platform.

Hermann, M., Pentek, T., and Otto, B. (2016). Design Principles for Industrie 4.0 Scenarios. In:

System Sciences (HICSS). Hawaii: IEEE.

IBM. (2018). Rational Rhapsody – Overview – United States. Available at:

https://www.ibm.com/us-en/marketplace/rational-rhapsody (accessed 19 February 2018)

IBM Knowledge Center. (2016). Rational Rhapsody modeling perspective. Available at:

https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.1.5/com.ibm.rhp.integ.ides.doc/

topics/rhp_r_int_rhp_modeling_perspective.html (accessed 26 May 2018)

INCOSE. (2010). INCOSE Systems Engineering Handbook v3.2. Idaho Falls, Idaho.

Knoll, D., Briatore, S., Moreno Aguirre, C., Fursova, A., Akhtyamov, R., Gonzalez, A., Poghosyan,

A., and Golkar, A. (2016). LaserNaut Feasibility Study. Conceptual system study of Skoltech /

Harvard Federated “Astronaut-on-a-Chip” Nanosatellite Mission. Presentation.

Knoll, D. and Golkar, A. (2016). A coordination method for concurrent design and a collaboration

tool for parametric system models. SECESA 2016, Madrid, (October), pp. 1–11. doi:

10.1177/1063293X17732374

Le Gal, JL. (2013). Concurrent engineering approach to design mission feasibility studies at CNES.

Presentation, Centre National d’Etudes Spatiales.

McLaughlin, M. (2005). Agile Methodologies for Software Development. Available at:

https://www.versionone.com/agile-101/agile-methodologies/ (accessed 16 May 2018)

McSorley, G., Fortin, C., and Huet, G. (2014). DS 77: Proceedings of the DESIGN 2014 13th

International Design Conference. In: International Design Conference (pp. 1843–1852).

Microsoft Support. (2016). Excel not responding, hangs, freezes or stops working. Available at:

https://support.office.com/en-us/article/excel-not-responding-hangs-freezes-or-stops-working-

37e7d3c9-9e84-40bf-a805-4ca6853a1ff4 (accessed 7 April 2018)

MySQL. (2018). MySQL Connectors. Available at: https://www.mysql.com/products/connector/

(accessed 15 May 2018)

NASA. NASA's Do-It-Yourself Podcast: Rocket Science. (2014). Available at:

https://www.nasa.gov/audience/foreducators/diypodcast/rocket-science-index-diy.html

(accessed 28 July 2017)

77

NASA. (2007). Systems Engineering Handbook. Washington, D.C.: National Aeronautics and Space

Administration.

NASA JPL. (2001). Concurrent Engineering Guideline for Aerospace Systems. Practice No. GD-

ED-2204. Available at: https://oce.jpl.nasa.gov/practices/2204.pdf (accessed 26 May 2018)

NASA JPL. (2015). JPL Team X. Available at: https://jplteamx.jpl.nasa.gov/ (accessed 26 May

2018)

NASA JPL. (2016). Open Model Based Engineering Environment. Available at:

http://www.openmbee.org/

NoMagic. (2017). NoMagic’s MBSE Solution. Available at: http://www.nomagic.com/mbse/

(accessed 14 February 2018)

Project Management Institute. (2008). Project Management Body of Knowledge (PMBOK), Vol. 4.

Roussel, JC., Golkar, A., and Knoll, D. (2017). Roadmap Creation Process. Airbus Technology

Planning and Roadmapping. Presentation, Airbus.

Schaus, V., Fischer, P., Lüdtke, D., et al. (2010). Concurrent engineering software development at

German aerospace center-status and outlook. In: 4th international workshop on system &

concurrent engineering for space applications, Lausanne, 13–15 October.

Schumann, H., Berres, A., Maibaum, O., and Röhnsch, A. (2008). DLR’s Virtual Satellite approach.

In: 10th International Workshop on Simulation on European Space Programmes, Noordwijk, 7–

9 October. Available at: http://elib.dlr.de/56030/1/SESP_2008_Schumann_VirtualSatellite.pdf

Spangelo, S., Kim, H., and Soremekun, G. (2013). Modeling & Simulation of CubeSat Mission.

Presentation. Available at: http://www.nomagic.com/mbse/images/casestudies/Modeling-and-

Simulation_of_CubeSat_Mission.pdf

Sparx Systems. (2018). UML tools for software development and modelling – Enterprise Architect

UML modeling tool. Available at: http://www.sparxsystems.com

TrustRadius. (2014). IBM Rational Team Concert Review: Powerful tool but a little clunky.

Available at: https://www.trustradius.com/reviews/ibm-rational-team-concert-2014-06-17-11-

45-02 (accessed 19 February 2018)

Tsykunova, R. (2016). Study of data structures, tools and processes to support concurrent

conceptual design of space products (Master). Skolkovo Institute of Science and Technology.

Ulrich, K. T., and Eppinger, S. D. (2008). Product Design and Development. McGraw–Hill, 5th

edition.

Unger, D. W., and Eppinger, S. D. (2009). Comparing product development process and managing

risk. International Journal of Product Development, Vol. 8, No. 4

78

VersionOne. (2005). The Benefits of Agile Software Development. Available at:

https://www.versionone.com/agile-101/agile-software-development-benefits/ (accessed 16 May

2018)

Webster, L. (2017). Visual Studio IDE, Code Editor, Team Services, & Mobile Center. Visual

Studio. Available at: https://www.visualstudio.com (accessed 31 July 2017)

de Weck, O. (2012). Design Structure Matrix. Lecture, Massachusetts Institute of Technology.

Available at: https://ocw.mit.edu/courses/engineering-systems-division/esd-36-system- project-

management-fall-2012/lecture-notes/MITESD_36F12_Lec04.pdf (accessed 9 April 2018)

Wheelwright, S. C. (1985). Product Development and Manufacturing Start-up. Manufacturing

Issue.

Yazdani, B. (1999). Four Models of Design Definition: Sequential, Design Centered, Concurrent

and Dynamic. Journal Of Engineering Design, 10(1), 25-37.

http://dx.doi.org/10.1080/095448299261407

79

Appendix A: An example of constructing an extrusion body with C3D
Modeler

80

As described in Section 5 of Chapter 3, it is proposed to use C3D Modeler as a tool for geometrical

representation. In this Appendix an example of an extrusion operation used in the software prototype

is provided for general understanding of the way the API of C3D Modeler works.

 In the example bellow, construction of an extrusion body is performed by a C++ function

ExtrusionSolid.

ExtrusionSolid (const MbSweptData & sweptData,

 const MbVector3D & direction,

 const MbSolid * solid1,

 const MbSolid * solid2,

 bool checkIntersection,

 ExtrusionValues & params,

 const MbSNameMaker & names,

 PArray<MbSNameMaker> & cnames,

 MbSolid *& result)

The function takes the following input parameters:

§ sweptData is the data for a curve generator,

§ direction is the extrusion direction,

§ solid1 is used when option «To next object in forward direction is selected,

§ solid2 is used when option «To next object in forward direction is selected,

§ checkIntersection is a flag indicating that it is necessary to merge solid1 and solid2

bodies subject to checking the intersection,

§ params are construction parameters,

§ names are face names

§ cnames are names of curve generator segments

Method output parameter is a constructed body result. If successful, the method returns

rt_Success, otherwise it returns an error code from MbResultType listing.

It could be noticed that the core objects used in C3D Modeler and represented in Figure 3.4

are basically written to be new types of variables. Figure A.1 represents the data used for construction,

as well as the scheme for inheriting the parameters of constructed extrusion body to better visualize

81

the linkages between different types of variable in this example. This greatly improves the software

development process using C3D Modeler as it brings simplicity in working with it.

Figure A.1

Data used for construction of an extrusion body and the scheme of inheriting the parameters
of constructed extrusion body, adapted from C3D Labs (2017)

A two-dimensional contour and flat surface (MbPlane) that can be used for an extrusion are

shown in Figure A.2. Figure A.3 represents a thin-walled closed body that was constructed by

extrusion based on specified contour parameters. Each contour segment has a corresponding face of

the body, its name is taken from the corresponding element of сnames[0] name generator embedded

into C3D Modeler.

Figure A.2

A two-dimensional contour and flat surface that can be used for an extrusion, adapted from
C3D Labs (2017)

82

Figure A.3

A thin-walled closed body that was constructed by extrusion based on specified contour
parameters, adapted from C3D Labs (2017)

83

Appendix B: The Python script used for establishing a secure
connection between an application working on C++ and MySQL

databases

84

As described in Section 2.4 of Chapter 4, it is proposed to use the Python Driver for MySQL for

establishing a secure connection between the software prototype working on C++ and MySQL

databases operated by CEDESK.

 Below is the code of the Python script with the MySQLConnector/C++ library included.

Relevant comments are included.

!/usr/bin/python
version.py - Fetch and display the MySQL database server version.

File name: MySQL_connection.py
Author: Nikita Letov
Date created: 03/12/2018
Date last modified: 04/04/2018
Python Version: 2.7.14

Import MySQL connector modules.
from mysql.connector import MySQLConnection, Error
Import Pandas library.
import pandas as pd
Import the CSV hanling library.
import csv
from collections import defaultdict
Import the library for addressing Windows Command Line.
import optparse

Importing user credentials for accessing a MySQL database.
parser = optparse.OptionParser('usage%prog' +
 '-username <username>' +
 '-password <pass> ' +
 '-host <host> ' +
 '-database <database> ')

parser.add_option('-u', dest = 'username', help = 'The Username for
authentication.')
parser.add_option('-p', dest = 'password', help = 'The password for
authentication.')
parser.add_option('-a', dest = 'host', help = 'The host to interact
with.')
parser.add_option('-d', dest = 'database', help = 'The database to run')

(options,args) = parser.parse_args()

def query_with_fetchone():
 try:
 # Open a database connection.
 ccnx = MySQLConnection()

85

 ccnx.connect(user = options.username,
 password = options.password,
 host = options.host,
 database = options.database)
 # Prepare a cursor object using cursor() method.
 cursor = ccnx.cursor()

 # Execute the SQL query using execute() method.
 cursor.execute ("CREATE OR REPLACE VIEW parameter_dependencies AS "
 "SELECT "
 "y.id AS system_id, "
 "y.`name` AS system_name, "
 "s1.id AS target_subsystem_id, "
 "s1.`name` AS target_subsystem_name, "
 "p1.id AS target_parameter_id, "
 "p1.`name` AS target_parameter_name, "
 "p1.`value` AS target_parameter_value, "
 "u.`name` AS target_parameter_unit, "
 "p2.id AS source_parameter_id, "
 "p2.`name` AS source_parameter_name, "
 "s2.id AS source_subsystem_id, "
 "s2.`name` AS source_subsystem_name "
 "FROM "
 "parametermodel p1 "
 "JOIN "
 "unit u ON p1.unit_id = u.id "
 "JOIN "
 "subsystemmodel s1 ON p1.parent_id = s1.id "
 "JOIN "
 "systemmodel y ON s1.parent_id = y.id "
 "JOIN "
 "parametermodel p2 ON p2.id = p1.valueLink_id "
 "JOIN "
 "subsystemmodel s2 ON s2.id = p2.parent_id "
 "WHERE "
 "p1.valueLink_id IS NOT NULL; ")
 cursor.execute ("SELECT "
 "`target_subsystem_id`, "
 "`target_subsystem_name`, "
 "`source_subsystem_id`, "
 "`source_subsystem_name`, "
 "COUNT(source_parameter_id) AS linked_parameters "
 "FROM "
 "parameter_dependencies "
 "WHERE "
 "system_name = \"LaserNaut\" "
 "GROUP BY `target_subsystem_name` ,
`source_subsystem_name`; ")

 # Allocating lists with imported values.
 target_subsystem_id = []
 target_subsystem_name = []

86

 source_subsystem_id = []
 source_subsystem_name = []
 linked_parameters = []

 # Adding imported values in the lists.
 row = cursor.fetchone()
 while row is not None:
 target_subsystem_id += [row[0]]
 target_subsystem_name += [str([row[1]])[13:-3]]
 source_subsystem_id += [row[2]]
 source_subsystem_name += [str([row[3]])[13:-3]]
 linked_parameters += [row[4]]
 row = cursor.fetchone()

 # Creating a dataframe with the data.
 d = {'Target subsystem id' : target_subsystem_id,
 'Target subsystem name' : target_subsystem_name,
 'Source subsystem id' : source_subsystem_id,
 'Source subsystem name' : source_subsystem_name,
 'Linked parameters' : linked_parameters}

 df = pd.DataFrame(data = d)
 df = df[['Target subsystem id',
 'Target subsystem name',
 'Source subsystem id',
 'Source subsystem name',
 'Linked parameters']]

 filename = 'dsm_data.csv'
 df.to_csv(filename)
 print(df)

 except Error as e:
 print(e)

 finally:
 # Closing the connection.
 cursor.close()
 ccnx.close()

if __name__ == '__main__':
 query_with_fetchone()

As a result of running the Python above from the C++ application, the software prototype gets data

represented in Table B.1 to operate with.

87

Table B.1
Data imported from an example MySQL database by running the Python script from the C++

software prototype
Subsystem

ID

Subsystem

name

Parameter

ID
Parameter name

Parameter

value
Parameter unit

17838
Mission +

Programmatics
17839 mission lifetime 0.5 year

17877 Orbit 17913 earth radius 6378 Kilometer

17877 Orbit 17914 orbit altitude 600 Kilometer

17877 Orbit 17915 inclination 97.7924 Degree

17877 Orbit 17916 SMA 6878.14 Kilometer

17843 AOCS 17984 Pointing Accuracy 0.1 Degree

17843 AOCS 17985 Peak power consumption 5.46 watt

17843 AOCS 17986 Mass 0.865 kilogram

17846 Optical Comms 17987 Pointing accuracy 0.1 Degree

17846 Optical Comms 17988 Power consumption 5.064 watt

17846 Optical Comms 17989 Mass 0.3 kilogram

17846 Optical Comms 18000 Orbit 600 Kilometer

17846 Optical Comms 18008 earth radius 6378 Kilometer

17838
Mission +

Programmatics
18052 Deployment velocity 2

metre per

second

17838
Mission +

Programmatics
18053 Min delay between 2 launches 1 minute

17841 Structure 18171 Max Payload Size X 0.093 Meter

17841 Structure 18172 Max Payload Size Y 0.093 Meter

17841 Structure 18173 Max Payload Size Z 0.2 Meter

17841 Structure 18174 Max Payload Mass 2.5 Kilogram

17841 Structure 18175 Momentum of Inertia X 0.02733417
Kilogram Meter

Squared

17841 Structure 18176 Momentum of Inertia Y 0.01500083
Kilogram Meter

Squared

17841 Structure 18177 Momentum of Inertia Z 0.03666667
Kilogram Meter

Squared

17841 Structure 18192 Launch Vibration Amplitude 7.84
Meter Per

Second Squared

17841

Structure

18193

Launch Vibration Frequency

100

Hertz

88

Table B.1 continuation
Data imported from an example MySQL database by running the Python script from the

C++ software prototype
Subsystem

ID

Subsystem

name

Parameter

ID
Parameter name

Parameter

value
Parameter unit

17841 Structure 18194 Launch Acceleration 42.14
Meter Per

Second Squared

17840 Bio Payload 18216 Capsule size X 0.093 Millimeter

17840 Bio Payload 18217 Capsule size Y 0.093 Millimeter

17840 Bio Payload 18218 Capsule size Z 0.093 Millimeter

17840 Bio Payload 18219 Capsule Mass 0.9 Kilogram

17840 Bio Payload 18220 Average Power 12 watt

17840 Bio Payload 18221 Bio Experiment Data Rate 0.05
kilobit per

second

17840 Bio Payload 18222 Bio Experiment Duration 28.105 day

17846 Optical Comms 18247 Experiment Telemetry generation 0.1
kilobit per

second

17846 Optical Comms 18248
Required radio satellite interlink

datarate
0

kilobit per

second

17842
Power +

Thermal
18263 Bus Voltage 11.1 Volt

17842
Power +

Thermal
18278 EPS Dimensions X 75 Millimeter

17842
Power +

Thermal
18279 EPS Dimensions Y 70 Millimeter

17842
Power +

Thermal
18280 EPS DImensions Z 45 Millimeter

17841 Structure 18311 Aerodynamic Disturbances 1.81E-05 Newton

17841 Structure 18384 Inclination 97.7924 Degree

17841 Structure 18385 Orbit Altitude 600 Kilometer

17841 Structure 18386 Satellite Velocity 7612.608
Meter Per

Second

17841 Structure 18387 Mission Lifetime 0.5 year

17841 Structure 18388 Bio Payload Size X 0.093 Millimeter

17841 Structure 18389 Bio Payload Size Y 0.093 Millimeter

17841 Structure 18390 Bio Payload Size Z 0.093 Millimeter

17841 Structure 18391 Laser Payload Size X 95 millimetre

89

Table B.1 continuation
Data imported from an example MySQL database by running the Python script from the

C++ software prototype
Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

17841 Structure 18392 Laser Payload Size Y 95 millimetre

17841 Structure 18393 Laser Payload Size Z 85 millimetre

17841 Structure 18433 Bio Payload Mass 0.9 Kilogram

17841 Structure 18441 Laser Payload Mass 0.3 kilogram

17844 RF Comms 18468 Power consumption (RX mode) 0.13 watt

17844 RF Comms 18469
Average access time for Moscow

per day
2055.15755 second

17844 RF Comms 18470 Power consumption (TX mode) 3.75 watt

17844 RF Comms 18471 Transceiver mass 100 Gram

17844 RF Comms 18476 UHF antenna mass 50 Gram

17844 RF Comms 18483 Time in TX mode (per day) 10080 Second

17845 OBDH 18491 Mass 80 Gram

17845 OBDH 18492 power consumption 1 watt

17844 RF Comms 18502 orbit altitude 600 Kilometer

17877 Orbit 18509 orbit velocity 7612.608
Meter Per

Second

17877 Orbit 18514
average access time to ground

station
2055.15755 second

17842
Power +

Thermal
18551 Orbit altitude 600 Kilometer

17842
Power +

Thermal
18552 Daylight duration 3673.658 second

17842
Power +

Thermal
18553 Orbit period 5801.23 second

17877 Orbit 18569 orbit period 5801.23 second

17877 Orbit 18570 sunlight time 3673.658 second

17842
Power +

Thermal
18578 Orbit inclination 97.7924 Degree

17846 Optical Comms 18642
Portion of the orbit dedicated to

experiment
10 percent

17846 Optical Comms 18643 Dimensions Z 85 millimetre

17846 Optical Comms 18671 Dimensions X 95 millimetre

90

Table B.1 continuation
Data imported from an example MySQL database by running the Python script from the

C++ software prototype
Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

17846 Optical Comms 18672 Dimensions Y 95 millimetre

17844 RF Comms 18725
Portion of time dedicated to laser

experiment
10 percent

17844 RF Comms 18762
Maximum distance between

satellites
841.519556 kilometre

17840 Bio Payload 18775 Max Payload size X 0.093 Meter

17840 Bio Payload 18776 Max Payload size Y 0.093 Meter

17840 Bio Payload 18777 Max Payload size Z 0.2 Meter

17840 Bio Payload 18778 Total Payload mass 2.5 Kilogram

17840 Bio Payload 18798 Inner Satellite T Sunside 0.15009647 Degree Celsius

17840 Bio Payload 18799 Inner satellite T darside -11.22916 Degree Celsius

17840 Bio Payload 18800 Launch Vibrations Amplitude 7.84
Meter Per

Second Squared

17840 Bio Payload 18801 Launch Vibrations Frequency 100 Hertz

17840 Bio Payload 18802 Launch acceleration 42.14
Meter Per

Second Squared

17840 Bio Payload 18805 Mission lifetime 0.5 year

17877 Orbit 18918 computed lifetime 6.4 year

17838
Mission +

Programmatics
19073

Starting distance between

satellites
50 kilometre

17842
Power +

Thermal
19084 Power System Mass 0.63783 Kilogram

17841 Structure 19127 Integrated Bus Mass 1.5 Kilogram

17842
Power +

Thermal
19176 Solar Cells Mass 0.18783 Kilogram

17841 Structure 19186 Solar Arrays Mass 0.18783 Kilogram

17842
Power +

Thermal
19257 Temperature Zenith Wall 0.15009647 Degree Celsius

17842
Power +

Thermal
19262 Temperature Nadir Wall -11.22916 Degree Celsius

17843 AOCS 19298 Average power consumption 1 Watt

91

Table B.1 continuation
Data imported from an example MySQL database by running the Python script from the

C++ software prototype
Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

Subsystem

ID
Subsystem ID

17846 Optical Comms 19515 LaserTransmitter_diameter 10 Millimeter

17846 Optical Comms 19516 LaserTrasmitter_powerDissipation 2.1252 Watt

17842
Power +

Thermal
19552 Laser Base diameter 10 Millimeter

17842
Power +

Thermal
19567 Laser Power Disipation 2.1252 Watt

17845 OBDH 19623
Amount of data to transmit per

day
1.64794922 Megabyte

17844 RF Comms 19632
Amount of data to transmit per

day
1.64794922 Megabyte

17845 OBDH 19633 Bio payload data rate 0.05
kilobit per

second

17845 OBDH 19634 Laser payload data rate 0.1
kilobit per

second

17842
Power +

Thermal
19680 Disipator cilinder height 90.4010843 Millimeter

92

Appendix C: Code of the main CMake file used in the study

93

As described in Section 2.2 of Chapter 4, it is proposed to CMake for building of the software

prototype.

 In this project, CMake files were adapted and expanded with new functionality relevant for

the study.

Below is the code for the main CMake file used to build the whole application. Relevant

comments are included.

Minimum CMake version required for building
CMAKE_MINIMUM_REQUIRED(VERSION 3.2.2)
PROJECT(Test)
SET(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/..)

Libraries
SET(Math_MATH_LIBRARY
 optimized ${CMAKE_BINARY_DIR}/../Release/c3d.lib
 debug ${CMAKE_BINARY_DIR}/../Debug/c3d.lib)

SET(Math_LIBRARIES ${Math_MATH_LIBRARY} CACHE FILEPATH "" FORCE)

Checking if PC runs 32-bit version
IF(CMAKE_HOST_WIN32)
 SET(Test_OUTPUT "Test")
ENDIF()

Unicode build
OPTION(MathTest_USING_UNICODE "Enable Unicode support" ON)

Math names are not included by default
OPTION(MathTest_QT "Use Qt Library" OFF)
IF(MathTest_QT)
 FIND_PACKAGE(Qt5Core)
 FIND_PACKAGE(Qt5Gui)
 FIND_PACKAGE(Qt5OpenGL)
ENDIF()

Source C++ files for creation of geometrical objects.
SET(Create_SRC
 ./Create/test_constraint.cpp
 ./Create/test_arc.cpp
 ./Create/test_assembly.cpp
 ./Create/test_contour.cpp
 ./Create/test_curve.cpp
 ./Create/test_plane.h
 ./Create/test_line.cpp
 ./Create/test_multiline.cpp
 ./Create/test_multithreading.cpp
 ./Create/test_point.cpp
 ./Create/test_curve3d.cpp
 ./Create/test_sheet.cpp
 ./Create/test_shell.cpp
 ./Create/test_map.cpp

94

 ./Create/test_solid.cpp
 ./Create/test_space.h
 ./Create/test_surface_.cpp
 ./Create/test_point3d.cpp
 ./Create/test_surface.cpp
 ./Create/test_user.cpp
)
SOURCE_GROUP(Create FILES ${Create_SRC})

Source C++ files for editing geometrical objects.
SET(Edit_SRC
 ./Edit/test_edit_contour.cpp
 ./Edit/test_edit_curve.cpp
 ./Edit/test_edit_plane.h
 ./Edit/test_edit_multiline.cpp
 ./Edit/test_edit_curve3d.cpp
 ./Edit/test_edit_map.cpp
 ./Edit/test_edit_solid.cpp
 ./Edit/test_edit_space.cpp
 ./Edit/test_edit_space.h
 ./Edit/test_edit_surface.cpp
)
SOURCE_GROUP(Edit FILES ${Edit_SRC})

Source C++ files of the GUI.
SET(Main_SRC
 ./Main/test_draw.cpp
 ./Main/test_draw.h
 ./Main/test_frame.h
 ./Main/test_frame1.cpp
 ./Main/test_frame2.cpp
 ./Main/test_frame3.cpp
 ./Main/test_service.cpp
 ./Main/test_service.h
 ./Main/test_variables.cpp
 ./Main/test_variables.h
)
SOURCE_GROUP(Main FILES ${Main_SRC})

Source C++ files for performing geometrical calculations.
SET(Make_SRC
 ./Make/test_computation.cpp
 ./Make/test_computation.h
 ./Make/test_converter.cpp
 ./Make/test_converter.h
 ./Make/test_mates.cpp
 ./Make/test_mates.h
 ./Make/test_rendering.cpp
 ./Make/test_rendering.h
 ./Make/test_rendering_.cpp
 ./Make/test_rendering_context.cpp
 ./Make/test_rendering_context.h
)
SOURCE_GROUP(Make FILES ${Make_SRC})

Source C++ files for managing processes in the application.
SET(Manager_SRC

95

 ./Manager/test_comanager.h
 ./Manager/test_comanager.cpp
 ./Manager/test_gr_draw.cpp
 ./Manager/test_gr_draw.h
 ./Manager/test_manager.cpp
 ./Manager/test_manager.h
 ./Manager/test_property.cpp
 ./Manager/test_property.h
 ./Manager/test_property_title.h
 ./Manager/test_style.h
 ./Manager/test_temporal_plane.cpp
 ./Manager/test_temporal_plane.h
 ./Manager/test_tree.cpp
 ./Manager/test_tree.h
 ./Manager/test_tree_filter.cpp
 ./Manager/test_tree_filter.h
 ./Manager/test_temporal.cpp
 ./Manager/test_temporal.h
 ./Manager/test_window.cpp
 ./Manager/test_window.h
 ./Manager/test_window_add.cpp
 ./Manager/test_window_find.cpp
 ./Manager/test_window_move.cpp
)
SOURCE_GROUP(Manager FILES ${Manager_SRC})

Source C++ files for the sample control.
SET(Samples_SRC
 ./Samples/test_samples.h
 ./Samples/test_sample_attributes.cpp
 ./Samples/test_sample_user_attributes.h
 ./Samples/test_sample_user_attributes.cpp
 ./Samples/test_sample_solid_elementary.cpp
 ./Samples/test_sample_solid_splitting.cpp
 ./Samples/test_sample_parametric_sketch.cpp
 ./Samples/test_sample_read_write_constraints.cpp
 ./Samples/test_sample_spinning_block.cpp
 ./Samples/test_sample_wireframe.cpp
)
SOURCE_GROUP(Samples FILES ${Samples_SRC})

Optional source C++ files for building using the Qt libraries.

IF(MathTest_QT)
 SET(QtTest_SRC
 ./Qt/test_main.cpp
 ./Qt/test_main_window.h
 ./Qt/test_main_window.cpp
 ./Qt/test_child_window.h
 ./Qt/test_child_window.cpp
 ./Qt/test_property_dialogs.h
 ./Qt/test_property_dialogs.cpp
 ./Qt/test_main_dialogs.h
 ./Qt/test_main_dialogs.cpp
)
 SOURCE_GROUP(QtTest FILES ${QtTest_SRC})

96

MOC files.

 SET(MOC_Files
 ./Qt/test_main_window.h
 ./Qt/test_child_window.h
 ./Qt/test_property_dialogs.h
 ./Qt/test_main_dialogs.h
)

 QT5_WRAP_CPP(MOC_Gui
 ${MOC_Files}
)

RCC files.

 SET(RCC_Files
 ./Qt/test.qrc
)

 QT5_ADD_RESOURCES(RCC_Gui ${RCC_Files})
 INCLUDE_DIRECTORIES(${QT_USE_FILE})

Optional source C++ files for building without using the Qt libraries.

ELSE()

 SET(WinTest_SRC
 ./Win/test.cpp
 ./Win/test.h
 ./Win/test.rc
 ./Win/test_dialogs.cpp
 ./Win/test_frame.cpp
 ./Win/test_info.h
 ./Win/test_prompt.h
 ./Win/test_set_filter.cpp
 ./Win/test_set_property.cpp
 ./Win/test_set_tree.cpp
 ./Win/test_std_afx.cpp
 ./Win/test_std_afx.h
 ./Win/test_window_graphic.cpp
)
 SOURCE_GROUP(WinTest FILES ${WinTest_SRC})

ENDIF()

Source sub-directories.
INCLUDE_DIRECTORIES(${CMAKE_BINARY_DIR}/../Include
 ${Test_SOURCE_DIR}/Create
 ${Test_SOURCE_DIR}/Edit
 ${Test_SOURCE_DIR}/Main
 ${Test_SOURCE_DIR}/Make
 ${Test_SOURCE_DIR}/Manager
 ${Test_SOURCE_DIR}/Samples
 ${Test_SOURCE_DIR}/Win
 ${Test_SOURCE_DIR}/Qt
)

97

ADD_DEFINITIONS(
 -D__TEST_ONLY__
)

IF(MSVC)
IF(MathTest_USING_UNICODE)
 ADD_DEFINITIONS(
 -DUNICODE
 -D_UNICODE
)
ENDIF(MathTest_USING_UNICODE)
ELSE()
 ADD_DEFINITIONS(
 -std=c++0x
)
ENDIF()

IF(MathTest_QT)
 ADD_DEFINITIONS(
 -D__USE_QT__
)
ENDIF()

IF(MathTest_WITH_VLD)
 ADD_DEFINITIONS(
 -DENABLE_VLD
)
ENDIF()

IF(MSVC)
 SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG_INIT} -D_DEBUG -D_DRAWGI /Zi
/W4")
 SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE_INIT} -D_SECURE_SCL=0 /W4")
ELSE()
 SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG_INIT} -D_DEBUG -D_DRAWGI -Wno-
deprecated-declarations")
 SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE_INIT} -D_SECURE_SCL=0 -Wno-
deprecated-declarations")
ENDIF()

IF(MathTest_QT)
 IF(MSVC)
 SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS_INIT} /ENTRY:mainCRTStartup")
 ENDIF()

 ADD_EXECUTABLE(${Test_OUTPUT} WIN32
 ${Create_SRC}
 ${Edit_SRC}
 ${Main_SRC}
 ${Make_SRC}
 ${Manager_SRC}
 ${Samples_SRC}
 ${QtTest_SRC}
 ${MOC_Gui}
 ${RCC_Gui}
)

98

ELSE()
 ADD_EXECUTABLE(${Test_OUTPUT} WIN32
 ${Create_SRC}
 ${Edit_SRC}
 ${Main_SRC}
 ${Make_SRC}
 ${Manager_SRC}
 ${Samples_SRC}
 ${Win_SRC}
 ${WinTest_SRC}
)
ENDIF()

IF(MathTest_QT)
 QT5_USE_MODULES(${Test_OUTPUT} Core Gui OpenGL)
ENDIF()

IF(MSVC)
 TARGET_LINK_LIBRARIES(${Test_OUTPUT}
 ${Math_LIBRARIES}
 ${VLD_LIBRARIES}
 ${QT_LIBRARIES}
 opengl32
 glu32
 comctl32
)
ELSE()
 TARGET_LINK_LIBRARIES(${Test_OUTPUT}
 ${Math_LIBRARIES}
 ${VLD_LIBRARIES}
 ${QT_LIBRARIES}
 GL
 GLU
)
ENDIF()

99

Appendix D: Excerpts of the code used for 3D DSM plotting

100

In this appendix some of the functions participating in building 3D DSM diagrams are presented.

Not all aspects and functions of the code could be presented here because of its complexity

and size. However, functions for establishing a MySQL connection through the Python script, for

building a simple cuboid that can be used for building a 3D histogram, and for the actual 3D DSM

representation have been excerpted as ones that allow users to see the result of their work.

//--
// Establish MySQL connection
// ---
void SQLconnection()
{
 TCHAR username[256];
 TCHAR password[256];
 TCHAR host[256];
 TCHAR database[256];

 // Accessing the Python script
 std::string filepath = "C:/Users/nikita.letov/Documents/MySQL_test_app/Build/";
 std::string filename = "MySQL_connection.py";
 std::string command = "cd " + filepath + " && python " + filename;

 if (GetString(IDS_ENTER_SQL_USERNAME, _T(""), username, STRINGLENGTH)) {}
 if (GetString(IDS_ENTER_SQL_PASSWORD, _T(""), password, STRINGLENGTH)) {}
 if (GetString(IDS_ENTER_SQL_HOST, _T(""), host, STRINGLENGTH)) {}
 if (GetString(IDS_ENTER_SQL_DATABASE, _T(""), database, STRINGLENGTH)) {}

 SetWaitCursor(true);

 command += " -u ";
 command += TcharToString(username);
 command += " -p ";
 command += TcharToString(password);
 command += " -a ";
 command += TcharToString(host);
 command += " -d ";
 command += TcharToString(database);

 FILE* in = _popen(command.c_str(), "r");
 _pclose(in);

 // Building 3D DSM
 BuildDSM3D();

 // Refreshing the screen
 TestVariables::viewManager->RefreshModel();

 filename = "dsm_data.csv";
 command = "cd " + filepath + " && start " + filename;

 SetWaitCursor(false);
}

101

//--
// Asses risks
// ---
void RiskAssessment()
{
 SetWaitCursor(true);

 BuildDSMrisk();

 // Refreshing the screen
 TestVariables::viewManager->RefreshModel();

 SetWaitCursor(false);
}

//--
// Build a cuboid by 3 points base and height.
// ---
void buildCubeBy3Point(MbCartPoint3D p1, MbCartPoint3D p2, MbCartPoint3D p3, double h,
uint32 color)
{

 // Allocating an array of points.
 MbCartPoint3D p[4];
 p[0] = p1;
 p[1] = p2;
 p[2] = p3;

 // Type of the solid: block (cuboid).
 ElementaryShellType type = et_Block;

 SArray<MbCartPoint3D> points(4, 1);
 points.Add(p[0]);
 points.Add(p[1]);
 points.Add(p[2]);

 MbSNameMaker names(503, MbSNameMaker::i_SideNone, 0);

 // Allocating memory for a solid.
 MbSolid * solid = NULL;

 // Avoiding the heght to be less than the metric precision.
 if (h < METRIC_PRECISION)
 h = METRIC_PRECISION;

 MbVector3D to;
 MbCartPoint3D p0;

 // Building the vector needed for building the cuboid.
 to = MbVector3D(p[0], p[1]) | MbVector3D(p[0], p[2]);

 // Normalizing the vector to the height.
 to.Normalize();
 to *= h;

102

 p0.Move(to);
 points.Add(p0);

 // Creating the cuboid.
 ::ElementarySolid(points, type, names, solid);

 // Checking, adding to the screen and coloring.
 if (solid != NULL)
 {
 TestVariables::viewManager->AddObject(TestVariables::ELEMENTARY_Style,
solid);
 solid->SetColor(color);
 }
}

//--
// Build DSM3D
// ---
void BuildDSM3D()
{
 std::string filename = "dsm_data.csv";
 std::ifstream file(filename); // declare file stream:
http://www.cplusplus.com/reference/iostream/ifstream/

 int CSVrows = countLinesInCSV(filename);

 // Allocate arrays.
 int* dsm_id = new int[CSVrows];
 std::string* target_subsystem_name = new std::string[CSVrows];
 int* target_subsystem_id = new int[CSVrows];
 std::string* source_subsystem_name = new std::string[CSVrows];
 int* source_subsystem_id = new int[CSVrows];
 int* linked_parameters = new int[CSVrows];

 // Access the data retrieved by the Python script and allocating it in arrays.
 for (int row = 0; row <= CSVrows; ++row)
 {
 std::string line;
 std::getline(file, line);
 if (!file.good())
 break;

 std::stringstream iss(line);
 for (int col = 0; col < 6; ++col)
 {
 std::string val;
 std::getline(iss, val, ',');

 if (row != 0)
 {
 switch (col)
 {
 case 0:
 dsm_id[row - 1] = StringToInt(val);

103

 break;
 case 1:
 target_subsystem_id[row - 1] = StringToInt(val);
 break;
 case 2:
 target_subsystem_name[row - 1] = val;
 break;
 case 3:
 source_subsystem_id[row - 1] = StringToInt(val);
 break;
 case 4:
 source_subsystem_name[row - 1] = val;
 break;
 case 5:
 linked_parameters[row - 1] = StringToInt(val);
 break;
 }
 }
 }
 }

 // IDs of all the subsystems
 int* all_subsystem_id = new int [2*CSVrows];
 std::copy(target_subsystem_id, target_subsystem_id + CSVrows,
all_subsystem_id);
 std::copy(source_subsystem_id, source_subsystem_id + CSVrows, all_subsystem_id
+ CSVrows);
 int subsystems_number = 0;
 std::set<int> sa(all_subsystem_id, all_subsystem_id + 2*CSVrows);
 subsystems_number = sa.size() - 1;
 delete [] all_subsystem_id;

 // Names of all the subsystems
 std::string* all_subsystem_name = new std::string[2 * CSVrows];
 std::copy(target_subsystem_name, target_subsystem_name + CSVrows,
all_subsystem_name);
 std::copy(source_subsystem_name, source_subsystem_name + CSVrows,
all_subsystem_name + CSVrows);
 std::set<std::string> sn(all_subsystem_name, all_subsystem_name + 2 * CSVrows);
 delete[] all_subsystem_name;

 // Redefining the arrays with all susbsystem IDs and names
 all_subsystem_id = new int[subsystems_number];
 all_subsystem_name = new std::string[subsystems_number];

 for (int i = 0; i < subsystems_number; i++)
 {
 std::set<int>::iterator iter_id = sa.begin();
 std::set<std::string>::iterator iter_name = sn.begin();

 std::advance(iter_id, i + 1);
 std::advance(iter_name, i + 1);

 all_subsystem_id[i] = *iter_id;
 all_subsystem_name[i] = *iter_name;

 myfile << *iter_id;

104

 myfile << ",";
 myfile << *iter_name;
 myfile << "\n";
 }
 myfile.close();

 // DSM array
 int** dsm = new int*[subsystems_number];
 for (int i = 0; i < subsystems_number; ++i)
 dsm[i] = new int[subsystems_number];
 for (int i = 0; i < subsystems_number; ++i) // for each row
 {
 for (int j = 0; j < subsystems_number; ++j) // for each column
 {
 dsm[i][j] = 0;
 }
 }

 for (int i = 0; i < CSVrows; ++i) // for each row
 {
 int dsm_x = FindIndex(all_subsystem_id, subsystems_number,
target_subsystem_id[i]);
 int dsm_y = FindIndex(all_subsystem_id, subsystems_number,
source_subsystem_id[i]);
 if (dsm_x >= 0 && dsm_y >= 0)
 dsm[dsm_x][dsm_y] = linked_parameters[i];
 }

 // Finding the highest risk
 int max_risk = 0;
 for (int i = 0; i < CSVrows; ++i)
 {
 if (linked_parameters[i] > max_risk)
 max_risk = linked_parameters[i];
 }
 float medium_risk = (float)max_risk / 2;

 int cube_side = 100;
 int risk_increment = 100;

 // Coloring the histogram
 for (int i = 0; i < subsystems_number; ++i) // for each row
 {
 for (int j = 0; j < subsystems_number; ++j) // for each column
 {
 if (dsm[i][j] > -1)
 {
 float red_color = 0;
 float green_color = 0;
 float blue_color = 255;
 if (dsm[i][j] <= medium_risk)
 {
 red_color = 255* (float)dsm[i][j] / max_risk;
 green_color = red_color;
 blue_color = 255 - red_color;
 }
 else

105

 {
 red_color = 255;
 green_color = 255 * (1 - (float)dsm[i][j] /
max_risk);
 blue_color = 0;
 }
 buildCubeBy3Point(MbCartPoint3D(i * cube_side, 0, j *
cube_side),
 MbCartPoint3D(i * cube_side, 0, (j + 1) * cube_side),
 MbCartPoint3D((i + 1) * cube_side, 0, j * cube_side),
 risk_increment * dsm[i][j],
 RGB(red_color, green_color, blue_color));
 }
 }
 }
}

