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Highly organized research is guaranteed to produce nothing new.
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This thesis, composed of six chapters, includes an introduction, a literature review, a pro-

posed geometric modeling approach, its implementation, case studies, and a conclusion. It

is written within the Additive Design and Manufacturing Lab (ADML)1 at McGill Uni-

versity’s Faculty of Engineering. The author claims the originality of the main ideas and

research results reported in this thesis. The major contributions of this thesis are:

• Lattice-function representation (LF-rep): An extension of the function represen-

tation (F-rep) method, formulated specifically for the advanced geometric modeling

of cellular structures. This new approach derives from a critical review of the exist-

ing research and identifies the gaps and potential directions in the realm of cellular

structure modeling.

• Skeletal graphs independence: An innovative methodology where skeletal graphs

are delineated distinctly from other geometric parameters. This separation enhances

modeling adaptability, ensuring a dynamic and flexible design process.

• Parameter customization: Moving beyond the traditional emphasis on thickness

parametrization, the introduction of modifiable cross-section shapes and truncation

increases the flexibility of cellular structure design. This development amplifies the

potential of cellular structures by enhancing customization and adaptability.

• Versatile application: Whether the need is for stochastic, conformal, or multi-topol-

ogy structures, the applicability of LF-rep remains. A suite of case studies further

underscores its efficacy, validating the theoretical background of the method and il-

luminating its transformative potential across various engineering domains, including

1https://adml.lab.mcgill.ca

https://adml.lab.mcgill.ca
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ABSTRACT

Geometric modeling has been an essential component of the design process since the advent

of computer-aided design (CAD) systems. It plays a crucial role in computer-aided engi-

neering (CAE) and topology optimization which rely on efficient and versatile modeling

techniques. In recent years, additive manufacturing (AM) has emerged as a groundbreak-

ing technology, offering unprecedented design freedom by enabling the creation of complex

cellular structures that are challenging to produce using conventional methods. Cellular

structures have significant potential for lightweight, high-strength, and customizable prod-

ucts across various industries, including aerospace, automotive, and biomedical.

However, the geometric modeling of heterogeneous cellular structures remains substan-

tially limited, resulting in a situation where manufacturing capabilities outpace geometric

modeling capabilities. This disparity hinders the full realization of the potential of AM

technology. Although there have been advancements in modeling heterogeneous cellular

structures, a review of the relevant literature revealed critical limitations of the existing

approaches, including their inability to model non-linear variations, a restricted number of

controllable geometric parameters, and the exclusive focus on thickness parametrization.

Moreover, the underdevelopment of free and open-source software (FOSS) for engineer-

ing, particularly in the AM domain, has further constrained the widespread adoption and

exploration of novel methodologies. This gap in accessible software tools limits the growth

and innovation of the field, reducing the potential benefits of AM technologies.

This work presents a novel geometric modeling methodology based on function repre-

sentation (F-rep) principles, termed as lattice-function representation (LF-rep), to address

these limitations and bridge the gap between manufacturing and modeling capabilities.

The proposed approach goes beyond typical cellular structure thickness parametrization,
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enabling the control of a broader range of geometric parameters through mathematical func-

tions. This offers higher precision and customization in creating complex cellular structures

that can be conformal, stochastic, or exhibit multiple topologies.

Furthermore, the proposed approach supports a more extensive range of heterogeneous

features than other existing solutions, making it suitable for various applications across dif-

ferent industries. To validate the effectiveness and feasibility of the proposed methodology

and address the lack of FOSS tools, a free and open-source software prototype implement-

ing the approach has been developed. Using the proposed F-rep method, this prototype

empowers users to generate and manipulate heterogeneous cellular structures.

Several use cases are analyzed to demonstrate the applicability and benefits of the pro-

posed approach in different scenarios, including lightweight structural components, energy-

absorbing materials, and biomedical implants. These use cases underscore the potential of

the presented methodology to revolutionize the design and manufacturing processes for cel-

lular structures, fostering new possibilities in the AM industry and promoting the growth

of FOSS tools for engineering.
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RÉSUMÉ

La modélisation géométrique est un élément essentiel du processus de conception depuis

l’apparition des systèmes de conception assistée par ordinateur (CAO). Elle joue un rôle

crucial dans l’ingénierie assistée par ordinateur (IAO) et l’optimisation topologique qui re-

posent sur des techniques de modélisation efficaces et polyvalentes. Ces dernières années,

la fabrication additive (AM) a émergé comme une technologie révolutionnaire, offrant une

liberté de conception sans précédent en permettant la création de structures cellulaires com-

plexes qui seraient difficiles à produire avec des méthodes conventionnelles. Les structures

cellulaires présentent un potentiel important pour des produits légers, résistants et person-

nalisables dans diverses industries, notamment l’aérospatial, l’automobile et le biomédical.

Cependant, la modélisation géométrique des structures cellulaires hétérogènes reste con-

sidérablement limitée, ce qui entrâıne une situation où les capacités de fabrication dépassent

les capacités de modélisation géométrique. Ce déséquilibre entrave la pleine réalisation du

potentiel de la technologie AM. Bien qu’il y ait eu des progrès dans la modélisation des

structures cellulaires hétérogènes, une revue de la littérature pertinente a révélé des lim-

ites critiques des approches existantes, notamment leur incapacité à modéliser les variations

non linéaires, un nombre restreint de paramètres géométriques contrôlables et une attention

exclusive portée à la paramétrisation de l’épaisseur.

De plus, le sous-développement des logiciels libres et open source (FOSS) pour l’ingénierie,

en particulier dans le domaine de l’AM, a encore limité l’adoption généralisée et l’exploration

de nouvelles méthodologies. Cette lacune dans les outils logiciels accessibles limite la crois-

sance et l’innovation du domaine, réduisant les avantages potentiels des technologies AM.

Ce travail présente une nouvelle méthodologie de modélisation géométrique basée sur la

représentation fonctionnelle (F-rep) pour surmonter ces limitations et combler l’écart entre
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les capacités de fabrication et de modélisation. L’approche proposée, nommée comme la

représentation de fonction de réseau (LF-rep), va au-delà de la paramétrisation d’épaisseur

typique des structures cellulaires, permettant le contrôle d’une gamme plus large de paramètres

géométriques grâce à des fonctions mathématiques. Cela offre une précision et une per-

sonnalisation accrues dans la création de structures cellulaires complexes pouvant être

conformes, stochastiques ou présenter plusieurs topologies.

En outre, l’approche proposée prend en charge un éventail plus large de caractéristiques

hétérogènes que les autres solutions existantes, la rendant adaptée à diverses applications

dans différentes industries. Pour valider l’efficacité et la faisabilité de la méthodologie

proposée et pallier le manque d’outils FOSS, un prototype de logiciel libre et open source

mettant en œuvre l’approche a été développé. En utilisant la méthode F-rep proposée,

ce prototype permet aux utilisateurs de générer et de manipuler des structures cellulaires

hétérogènes.

Plusieurs cas d’utilisation sont analysés pour démontrer l’applicabilité et les avantages

de l’approche proposée dans différents scénarios, y compris les composants structuraux

légers, les matériaux absorbant l’énergie et les implants biomédicaux. Ces cas d’utilisation

soulignent le potentiel de la méthodologie présentée pour révolutionner les processus de

conception et de fabrication des structures cellulaires, favorisant de nouvelles possibilités

dans l’industrie de l’AM et promouvant la croissance des outils FOSS pour l’ingénierie.
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Chapter 1

Introduction

It’s the job that’s never started as takes longest

to finish.

John Ronald Reuel Tolkien (1892 – 1973),

The Lord of the Rings

1.1 Background

In recent years, the maturation of additive manufacturing (AM) technologies has opened

up new possibilities for designing and producing complex, lightweight, and high-strength

materials. One such area of interest is the creation and manipulation of cellular struc-

tures, which offer unique properties and applications across various industries, including

aerospace, automotive, and biomedical engineering. Cellular structures, characterized by

their repeating patterns and interconnected units, have been studied and utilized for cen-

turies. However, the advent of AM has enabled unprecedented design freedom and the

potential to manufacture structures with intricate geometries and graded properties, such

as heterogeneous cellular structures.
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This thesis delves into the geometric modeling of heterogeneous cellular structures, em-

phasizing functionally graded parameters. The research seeks to address the limitations of

current geometric modeling approaches, which hinder many potentials of AM technologies,

and to develop a novel methodology based on function representation (F-rep) to overcome

these limitations. The dissertation also discusses the current state of free and open-source

software (FOSS) tools for engineering and their impact on growth and innovation in the AM

industry. By presenting a software prototype implementing the proposed F-rep methodol-

ogy, this work aims to advance geometric modeling techniques for cellular structures and

the broader adoption of FOSS tools in the engineering domain.

1.1.1 A brief history of cellular structures in engineering applications

Ever since the early days of humankind, nature has been an immense source of inspiration

when it comes to designing and inventing (Li et al., 2019). For example, more than 2000

years ago, people in Asia noticed that some trees, such as European spruce (Picea abies)

illustrated in Fig. 1.1a, have their branches shaped in a way that raindrops slide along them

fast. Rainfall water does not hold on them for long (Weiskittel et al., 2009). As there was

a need to prevent roof leakage, it is believed that this idea was adapted to the roof-building

process and can be traced up to pagoda roofs illustrated in Fig. 1.1b, which are common

in China, Korea, Japan, and other regions of Asia (Moffett et al., 2003; Lutfi, 2018). The

intuition of the ancient people led them to the right solution, as this shape appeared to

be a so-called brachistochrone curve—an optimal curve of fastest descent and thus does

not let water stay on roofs for long (Ashby et al., 1975). Figure 1.1c shows a plot of a

brachistochrone curve and the specific time required to travel along it, as well as plots of a

circular arc, a parabola, and a straight line for comparison. While not a cellular structure,

the brachistochrone curve illustrates how nature has inspired functional design throughout
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history, which can also be applied to studying cellular structures. The history of design is

full of other examples of bio-inspiration.

Figure 1.1 (a) Branches of a conifer tree and (b) the roof of the Kiyomizu-
dera temple in Kyoto, Japan follow the pattern of (c) the brachistochrone
curve – an optimal curve of fastest descent – to prevent rainfall water from
staying on them (Letov et al., 2021)

Another example is a glass sponge structure of Venus’ flower basket (Euplectella as-

pergillum) with complex hierarchical structures, which inspires some modern architectures

in the world, such as the Swiss Re Tower in London, United Kingdom, and the Eiffel Tower

in Paris, France, shown in Fig. 1.2b. The intricate skeleton of a glass sponge is shown in

Fig. 1.2a. The structure is strong and flexible, even though it is made of fragile glass. The
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reason is that the glass sponge has complex hierarchical and lightweight structures from

nanometer to macroscopic length scales. This multiscale heterogeneous cellular structure

overcomes the brittleness of the glass material, which helps it achieve lightweight combined

with high strength (Li et al., 2020b). This naturally occurring cellular structure found in

the glass sponge is a prime example of nature’s ability to create lightweight and strong

structures, which can be harnessed in engineering applications.

Figure 1.2 (a) The intricate skeleton of glass sponge of the Venus’ flower
basket (Euplectella aspergillum), (b) the Eiffel Tower in Paris (Jones et al.,
2009), (c) bio-inspired structure and honeycomb structures, and (d) the com-
pression versus displacement curves for three bio-inspired structures (Li et al.,
2020b).

This lightweight structure of the glass sponge also inspired engineering designs of tube-
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shaped and thin-walled structures, such as the bio-inspired and honeycomb lightweight

structures produced by AM, as shown in Fig. 1.2c. These two structures have been tested

through finite element modeling (FEM) analysis to compare the difference between their

structural properties under a specific compression condition. As seen in the compression-

displacement curve of different structures shown in Fig. 1.2d, the honeycomb structure

was not able to provide superior structural compression-bearing characteristics and low

lightweight compared to the bio-inspired structures I and II, which indicates that the struc-

ture inspired from glass sponge performs better on the compression, bending, and torsion

capacity. The lightweight structure inspired by glass sponge can be widely used in industry

sectors that require low weight and high reliability, such as the aerospace and automotive

industries.

Another similar example would be the aircraft structure inspired by the honeycomb

structure. The honeycomb illustrated in Fig. 1.3a comprises hexagonal cellular structures,

which provide the most stable containment using the least amount of material (Bar-Cohen,

2005). The honeycomb structure is a perfect example of a naturally occurring cellular struc-

ture widely adopted in engineering design for its exceptional properties, such as strength-

to-weight ratio. A cross-section of a rotor blade is presented in Fig. 1.3b, which is composed

of various composite materials to produce a lightweight and strong rotor blade. The rotor

blade incorporates the honeycomb structure because it should be strong enough to provide

the lifting force for the helicopter along with the adjustments of the angles of its blades

while being as light as possible (Bar-Cohen, 2005). The bonding of the environmentally

friendly Nomex honeycomb core and metal skin also allows the designer to form desirable

shapes into blades, increasing the performance in beam strength (Kerrick, 2011).

Heterogeneous cellular structures, in which material properties or geometric parameters

vary across the structure, offer several advantages over their homogeneous counterparts,



1 Introduction 6

Figure 1.3 (a) A honeycomb structure (Thane, 2007) and (b) the cross-
sectional view of a composite rotor blade (Garinis et al., 2012)

particularly in scenarios where a combination of properties is desired or when a specific

performance requirement must be met. For example, heterogeneous structures can be

designed to exhibit spatially varying stiffness, strength, or energy absorption properties,

allowing them to be tailored to specific loading conditions or functional requirements (Arab-

nejad Khanoki and Pasini, 2012; Wang et al., 2016). In contrast, homogeneous structures

with uniform material properties and geometric parameters may not provide the same

adaptability or performance optimization level.

AM-fabricated cellular structures have applications in many other industry sectors,

such as automotive (Fig. 1.4a), engineering (Fig. 1.4b), and medical (Fig. 1.4c). In the

aerospace industry, heterogeneous structures can provide an optimal strength-to-weight

ratio crucial for reducing fuel consumption and enhancing structural performance (Liu

et al., 2018). In the biomedical field, graded cellular structures can mimic the properties of

natural bone, resulting in improved osseointegration and load-bearing capacity of implants

(Arabnejad Khanoki and Pasini, 2012).

Cellular structures can be classified variously, as shown in Fig. 1.5. For example, they

can be classified as homogeneous and heterogeneous. The cellular structure properties vary
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Figure 1.4 (a) Lightweight plates used in automotive industry (Rosenthal
et al., 2019), (b) a wrench with a Voronoi-Monte Carlo structure for enhanced
energy absorption (Liu et al., 2019), and (c) a pelvic implant for bone in-
growth (Park et al., 2022a)

over the entire structure in a heterogeneous structure, while these parameters stay constant

in a homogeneous cellular structure (Tang and Zhao, 2016).

Figure 1.6 illustrates different research directions on heterogeneous cellular structures

in a diagram. Cellular structures can be heterogeneous in their geometry and material.

The geometry can be made heterogeneous by varying parameters and topology.

In summary, nature has been a rich source of inspiration for designing and developing

cellular structures throughout history. From the brachistochrone curve to the glass sponge

and honeycomb structures, these naturally occurring patterns have provided valuable in-

sights into creating lightweight and strong structures. This historical context lays the
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Figure 1.5 Classification chart for cellular structures designs (McGregor
et al., 2021)

foundation for exploring the challenges and advancements in the additive manufacturing

and geometric modeling of cellular structures, as discussed in the following subsections.

This historical context lays the foundation for exploring the challenges and advance-

ments in the AM and geometric modeling of cellular structures. Heterogeneous cellular

structures, in particular, offer even more complex and versatile design possibilities due

to the variations in parameters and topology. The following subsections will discuss the

challenges and advancements in modeling and manufacturing these heterogeneous cellular

structures.

1.1.2 Additive manufacturing capabilities for cellular structures

This section discusses the strong relationship between AM and cellular structures, high-

lighting how AM has revolutionized the fabrication of cellular structures with its unique

capabilities. Understanding this connection is crucial for exploring the challenges and
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Figure 1.6 Various ways to parametrize heterogeneous cellular structures

advancements in modeling and manufacturing cellular structures presented in this disser-

tation.

Figure 1.7 presents a comprehensive overview of various AM processes that will be dis-

cussed in more detail. This figure, adapted from Wong and Hernandez (2012), categorizes

these processes into three groups: liquid-based, solid-based, and powder-based. The se-

lected processes represent the most significant historical methods and hold great potential

for the future of the industry. Included in this review are stereolithography (STL), Poly-

jet, fused deposition modeling (FDM), laminated object manufacturing (LOM), 3D printing

(3DP), Prometal, selective laser sintering (SLS), laminated engineered net shaping (LENS),

and electron beam melting (EBM). Among these, liquid- and powder-based processes show

greater promise than solid-based processes, with LOM being the most prevalent solid-based

process currently in use (Wong and Hernandez, 2012).

AM has been pushing the limits of design freedom since its introduction (Yang et al.,

2015b; Yang and Zhao, 2015; Bikas et al., 2016). This work defines AM as “the process of

joining materials to make objects from 3D model data, usually layer upon layer, as opposed
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Figure 1.7 Additive manufacturing processes. Adapted from Wong and
Hernandez (2012).

to subtractive manufacturing methodologies” (ASTM F2792-12). AM allows much higher

geometric complexity than the more conventional manufacturing methods (Jared et al.,

2017). The increased complexity that AM can fabricate is mainly associated with the

additive nature of this technology. AM fuses or solidifies material at desired places (Zhang

and Liou, 2021). AM does not require extra tooling and can build parts with complexity

unachievable by conventional manufacturing methods (Chu et al., 2008). One of the key

benefits of AM for cellular structures is its ability to produce highly complex and intricate

shapes that would be challenging or impossible to create using traditional manufacturing

methods, making it an ideal choice for producing lightweight and high-strength cellular

structures.

The unique capabilities of AM have led to the realization of complex cellular structures,

which were previously unachievable with traditional manufacturing methods. Figure 1.8
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illustrates a few examples of cellular structures produced by AM. An example of a het-

erogeneous cellular structure is shown in Fig. 1.9, which shows a cellular structure that

consists of multiple topologies. Cellular structures have found their industrial applications

in various sectors such as aerospace, medicine, and construction (Balzannikov et al., 2016;

Azarov et al., 2019; Wang and Tamijani, 2022). AM enables the fabrication of heteroge-

neous cellular structures, which combine multiple sets of geometric properties in different

regions of a single structure. These structures can be tailored to possess unique properties,

such as a reduced mass or a negative Poisson ratio (Savio et al., 2017; Mohammadi et al.,

2020). Heterogeneous cellular structures can enhance mechanical properties like stress and

strain in specific directions, making them suitable for applications that require varying load

distribution throughout different regions (Leonardi et al., 2019; Zhang et al., 2021). These

structures have found their application in biomedicine (Yang et al., 2021), dentistry (Javaid

et al., 2019), vibration management (Matlack et al., 2016), bridge construction (Koltunov

and Koroleva, 2021), heat exchange (Kim and Yoo, 2020), and more.

Figure 1.8 Examples of cellular structures that can be printed with AM:
(a) a Voronoi topology, (b) a body-centered cubic (BCC) topology, and (c) a
metal-printed simple cubic topology (Letov and Zhao, 2022)

Cellular structures can be seen in all of these applications. Numerous research domains

are utilized in AM: computational optimization, geometric modeling, structural simulation,

material science, and other domains (Wohlers and Gornet, 2014; Taufik and Jain, 2016).
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Figure 1.9 A printed example of a heterogeneous cellular structure with
multiple topologies and a varying beam thickness (Leonardi et al., 2019)

Even though these domains use different software tools, methodologies, and approaches,

they cannot be considered separately. For example, computational optimization can be

applied not only to weight reduction but to parts consolidation as well. The geometric

modeling tool for AM must support the representation of these multi-domain computer-

aided analyses and further optimization and simulation.

In summary, the advent of additive manufacturing has dramatically expanded the possi-

bilities for designing and fabricating cellular structures with unprecedented complexity and

functionality. The unique capabilities of AM have made it possible to create heterogeneous

cellular structures with tailored mechanical properties, enabling their use in a wide range

of applications, from aerospace to biomedicine. The following subsection explores the role

of geometric modeling techniques in supporting the design and MA fabrication of cellular

structures.

1.1.3 Geometric modeling of cellular structures

Since the introduction of the first computer-aided design (CAD) software packages, en-

gineers and designers have been intensively using solid geometric modeling. Geometric
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modeling in engineering is applied as early as the conceptual design stage, and the geomet-

ric model is used throughout the product development lifecycle. The conceptual stage of

a product lifecycle is one of the most crucial ones. It is the first or early phase of the de-

sign process where designers and engineers explore ideas for the project using various tools

such as drawings, physical models, and 3D renderings of basic, preliminary ideas (Fortin

et al., 2017). The conceptual design phase is about generating several design concepts that

are then compared and contrasted to the product design specifications and ultimately the

problem the product is trying to solve (Menshenin et al., 2020). The importance of the

conceptual design stage lies in the fact that it determines 70% of the development cost,

unit cost, performance, and usability (Hamelin et al., 2010). 70% percent of the success of

a product is determined in the conceptual design phase, as illustrated in Fig. 1.10.

Figure 1.10 Committed lifecycle cost versus time (Hamelin et al., 2010)

Geometric modeling tools allow for the creation of 3D models that can be used to

detect potential design issues and find solutions. These tools are often parametric and
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allow for rapid and interactive control of shapes, which is essential in developing a prod-

uct (Haimes and Drela, 2012). Geometric modeling can enhance model-based systems en-

gineering (MBSE) (Letov, 2018; Menshenin et al., 2020). The integration of system models

with geometric models can provide a more comprehensive view of the system and help to

identify potential issues (Bajaj et al., 2016). Model-based definition (MBD) starts with

streamlining the engineering product definition process to use 3D CAD geometry models

and associated data sets.

While conventional geometric modeling has proved useful for engineering design, it

failed to meet the demands of AM techniques. Existing CAD software packages and their

geometric modeling kernels (GMKs) cannot handle the significantly increased complexity

that bio-inspired designs typically create. They are also challenged to model the com-

plex structures that AM technology can easily fabricate, such as heterogeneous cellular

structures. In other words, there is a research gap between manufacturing capacity and

geometric modeling capabilities (Doubrovski et al., 2015; Letov et al., 2021).

Current geometric modeling techniques tend to fail in supporting AM due to AM tech-

nology’s increased design freedom, which can support the high geometric complexity of

manufactured parts. Since geometric modeling is based on classical topology and geome-

try, the higher the geometric complexity, the harder it is to model it (Edalat and Lieutier,

2002), especially when the geometry is bio-inspired and does not follow the typical design

rules (Kou and Tan, 2007). This complexity cannot be supported by explicit modeling

mainly due to the enormous amount of Boolean operations required to design a single ge-

ometrically complex part (Rosen, 2007), such as cellular structures and bio-inspired struc-

tures seen in Fig. 1.2c (Dimas and Buehler, 2014; Panda, 2015). It has been identified

that there is no sufficient geometric modeling tool that would be able to represent complex

heterogeneous cellular structures (Tang and Zhao, 2016). This lack of a proper tool forms
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a research gap yet to be filled (Letov et al., 2021).

In this work, a geometric model is considered to be complex if (1) it is more difficult

to model it with Boolean descriptive modeling rather than with parametric modeling, or

(2) it is not possible to support 30 frames-per-second (FPS) frame rate performance on an

average computer used in engineering. Additionally, a machine is considered average if it

can provide at least 16 GB of random-access memory (RAM), a graphical processing unit

(GPU) with at least 6 GB of video memory, a solid-state drive (SSD), and a 64-bit central

processing unit (CPU) with a clock signal frequency of 3.3 GHz. These system requirements

are identified according to the recommended system requirements for SolidWorks (Dassault

Systèmes SE, 2006) and Rhinoceros 3D (Robert McNeel & Associates, 2020a) software

packages, which are extensively used for 3D modeling (Dassault Systèmes SE, 2020; Robert

McNeel & Associates, 2020b). The threshold of 30 FPS is chosen as it is proven to be

sufficient for convenient work and observations (Kamaci and Altunbasak, 2003).

Topology optimization is a powerful computational method that aims to optimize mate-

rial distribution within a given design space, subject to certain constraints and objectives,

to achieve the best possible performance for a specific application. The method has gained

significant attention over the past few decades due to its ability to generate highly efficient

and innovative designs for various engineering applications, from structural components to

heat exchangers and acoustic devices (Bendsøe and Sigmund, 2013).

One of the main advantages of topology optimization is that it can automatically identify

the most effective material distribution to minimize weight, maximize stiffness, or achieve

other desired performance criteria without the need for explicit geometric modeling (Sig-

mund, 1997). This is particularly useful for applications where the optimal design may be

highly complex or counterintuitive and where traditional design approaches may struggle

to identify the best solution. However, the resulting designs from topology optimization are
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often highly intricate and may require further explicit geometric modeling and refinement

to ensure manufacturability and to meet other practical requirements (Jihong et al., 2021).

Furthermore, explicit geometric modeling is essential for successfully integrating topology-

optimized designs into the broader engineering design process. This includes model vali-

dation, design evaluation, and incorporating manufacturing constraints and requirements

(Jihong et al., 2021). By developing advanced explicit geometric modeling techniques and

tools, it is possible to improve the overall efficiency and effectiveness of the design process,

bridging the gap between the idealized solutions generated by topology optimization and

the practical realities of engineering design and manufacturing. In other words, no implicit

modeling method can be developed without a proper explicit modeling method at its core.

With this in mind, this research focuses on more explicit geometric modeling methods and

aims to contribute to this field.

This thesis introduces a novel methodology based on function representation (F-rep)

for the geometric modeling of heterogeneous cellular structures and its implementation in

a software prototype. The software prototype is packaged in a library called LatticeQuery.

The methodology is simplified to be used as a collection of simplified functions, which can

generate a heterogeneous cellular structure based on the function arguments. The library

presented in this thesis aims to provide flexible methods that reduce the amount of user

input to provide a desired heterogeneous cellular structure.

1.2 Dissertation outline

The structure of the remaining portions of the thesis is as follows:
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Chapter 2:

Chapter 2 presents a comprehensive literature review on geometric modeling, particularly

focusing on its application to cellular structures. The chapter explores various aspects

of geometric modeling, such as surface, volumetric, hybrid, and multi-scale modeling, and

examines bio-inspired geometric modeling approaches. It also discusses the challenges in the

geometric modeling of heterogeneous cellular structures, existing techniques for modeling

cellular structures, and the role of multiple topologies in cellular structures. Additionally,

the chapter covers the graphical user interface of software packages for modeling cellular

structures and function representation concepts applied to geometric modeling.

Chapter 3:

Chapter 3 presents the proposed geometric modeling method based on the function repre-

sentation approach for the geometric modeling of heterogeneous cellular structures. The

chapter introduces a novel geometric description to represent various cellular topologies. It

then discusses a method for varying geometric parameters in a non-linear manner, enabling

greater control and flexibility in designing cellular structures. The chapter further explores

the creation of cellular structures with multiple topologies, demonstrating the versatility

of the proposed method. It also delves into the generation of stochastic cellular structures,

showcasing the ability of the approach to produce random and unique configurations. Fi-

nally, the chapter examines conformal cellular structures, illustrating how the proposed

method can effectively adapt to complex and varying surface geometries, thereby offering

a comprehensive solution for designing heterogeneous cellular structures.
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Chapter 4:

Chapter 4 details the practical aspects of the proposed geometric modeling method in-

troduced in Chapter 3. The chapter begins by providing functional definitions of cellular

topologies, including beam- and surface-based topologies. It then discusses the functional

variation of geometric parameters essential for designing complex heterogeneous cellular

structures. The chapter further explores the generation of cellular structures with multiple

topologies, illustrating the implementation process for both beam- and surface-based cel-

lular structures. It also covers the modeling of stochastic cellular structures, emphasizing

the implementation of randomness and uniqueness in design. The chapter then delves into

the implementation of conformal cellular structures, addressing both surface conformal-

ity and volume conformality aspects. Subsequently, the chapter introduces LatticeQuery,

an open-source software developed to support the proposed method, describing its archi-

tecture and usage. Finally, the chapter assesses the computational performance of the

proposed method, highlighting its efficiency and effectiveness in designing heterogeneous

cellular structures.

Chapter 5:

Chapter 5 demonstrates the practical applications of the proposed geometric modeling

method to real-life scenarios.

The first case study focuses on the use of the proposed method to model cellular struc-

tures used to estimate their flow and thermal characteristics, showcasing the utility of

the method in solving real-world engineering problems. The chapter begins by discussing

geometric, flow, and thermal properties of cellular structures, setting the context for the

case study. It then reviews existing experimental results, highlighting the importance of
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accurate geometric modeling in understanding the performance of cellular structures. The

chapter describes the methods to apply the proposed geometric modeling approach to the

case study. Finally, the chapter presents the results obtained from the case study, em-

phasizing the effectiveness and accuracy of the proposed method in capturing the complex

behavior of cellular structures and estimating their flow and thermal characteristics.

The second case study explores the multifunctional non-pneumatic tire design. The

ideation and conceptual design process are discussed, illustrating how the proposed geo-

metric modeling method can be applied in the early design stages to develop innovative

solutions. The results of this case study are presented, showcasing the potential of the

proposed method to create novel and effective designs in the context of non-pneumatic tire

engineering. Together, these case studies provide examples of the versatility and practical-

ity of the proposed geometric modeling method in addressing complex design challenges.

Chapter 6:

Chapter 6 summarizes the dissertation’s main contributions and discusses the limitation of

this work and the future research needed in this area.
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Chapter 2

Literature review

We penetrated deeper and deeper into the heart

of darkness.

Joseph Conrad (1875 – 1924),

Heart of Darkness

This chapter presents a comprehensive literature review on the current state of geomet-

ric modeling, focusing on techniques used for bio-inspired designs, geometrically complex

structures, and cellular structures. This review serves as a foundation for understanding

the challenges and research gaps in the field, which will inform the development of a novel

methodology and software prototype for the geometric modeling of heterogeneous cellular

structures in additive manufacturing in this research.

The rest of this chapter is organized as follows. Section 2.1 delves into the current status

of geometric modeling, covering surface modeling, volumetric modeling, hybrid modeling,

and multi-scale modeling. In Section 2.2, the geometric modeling of geometrically com-

plex structures is discussed, followed by Section 2.3, which highlights the challenges in

the geometric modeling of heterogeneous cellular structures. Section 2.4 explores existing
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techniques and tools for the geometric modeling of cellular structures, including surface,

volumetric, and hybrid modeling approaches. Finally, Section 2.5 presents the research

objectives of this thesis that are based on the performed literature review.

2.1 Current status of geometric modeling

Modern engineering software, including CAD, computer-aided manufacturing (CAM), and

computer-aided engineering (CAE) applications, relies on a GMK at its core, supplemented

by various other tools (Letov, 2018). GMKs are responsible for creating numerical repre-

sentations of geometries using mathematical methods (C3D Labs, 2020). The geometric

modeling of intricate bio-inspired structures poses significant challenges, predominantly

concerning the definition of bounding shapes and the computational optimization of a

GMK (X. Gu et al., 2016; Savio et al., 2018). The mathematical foundations of GMKs

encompass linear algebra, topology, mathematical logic, graph theory, and more (Gardan,

2014; Golovanov, 2014), which are translated into code to display geometric information

on a screen.

Efficient GMK development relies on programming techniques offering high-level func-

tionality (Ushakov, 2018). As the development process typically involves a large team of

software developers and mathematicians working over several years, it becomes extremely

challenging for smaller teams to create a GMK (Schnitger Corporation, 2012).

GMKs share similarities with 3D graphics software packages used in the movie and

video game industries (Felbrich et al., 2018). Both represent 3D models on screen and

simulate their behavior. However, while GMK-based 3D models are solid models with

material properties, 3D graphics models primarily possess geometric and visual properties.

Despite their differences, the two types of software have overlapping features that could
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potentially be adopted by one another to enhance quality.

In this research, 3D objects are defined according to the functional representation (F-

rep) methodology, where a 3D object is described by a real-valued function F (X) such

that F (X) ≤ 0 represents the object, F (X) = 0 its surface, and F (X) > 0 the rest of

the design space (Pasko et al., 1995). This notation is chosen for defining 3D objects in

this research because of its flexibility, compactness, support for constructive operations,

ability to represent implicit surfaces, analytical properties, and adaptability to multi-scale

modeling. To visualize these objects, most CAD software packages use GMKs in con-

junction with parametric modeling kernels that support Boolean operations and geometric

constraints (Golovanov, 2014).

CAD tools generally employ surface or volumetric modeling to represent the geometry

of solid bodies in CAD files. In this section, general concepts of geometric modeling are

introduced. Sections 2.1.1 and 2.1.2 below provide a comprehensive overview of these two

approaches to geometric modeling. Hybrid modeling methods are covered in Section 2.1.3.

Section 2.1.4 introduces function representation concepts and their application to geometric

modeling. Section 2.1.5 describes techniques to support multi-scale geometric modeling.

2.1.1 Surface modeling

This section discusses the topological aspects of geometric modeling and the limitations of

conventional modeling techniques like polygonal meshes, boundary representation (B-rep),

constructive solid geometry (CSG), isogeometric analysis (IGA), and subdivision surfaces in

handling these complexities. Recent advancements and alternative methods in the field of

geometric modeling are also explored, which may offer improved performance and accuracy

for modeling complex structures

Topologically, the surface of a geometrically complicated part such as a cellular structure
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is a closed-oriented two-manifold M2
g of a significantly large non-zero genus (g ≫ 0). In

topology, a closed two-manifold is a connected surface that exists in 3D. They are oriented

if there is no path from one side of a surface to another, as seen in Fig. 2.1a. Non-oriented

manifolds such as Klein’s bottle in Fig. 2.1b cannot exist and be manufactured in reality

and thus are not considered for modeling. Only orientable two-manifolds are considered

in this work because only a solid body bounded by an orientable two-manifold without

intersections is manufacturable. A single simple unit grid has genus g = 5, meaning that

it has many curvatures and details on its micro-scale (Letov and Zhao, 2021).

Figure 2.1 Two closed two-manifolds: (a) an oriented two-manifold of genus
g = 1 (torus) T = M2

1 and (b) a non-oriented two-manifold of genus g = 2
(Klein’s bottle) N2

2 (Hatcher, 2001)

Polygonal meshes begin to fail when complex geometric objects are modeled with them,

such as heterogeneous cellular structures. One of the most popular non-proprietary CAD

file formats – stereolithography (STL) – utilizes polygonal representation (Braun et al.,

2021). In polygon surface mesh, the number of finite elements rises exponentially with

model complexity. It severely impacts the modeling of complex shapes due to its high

computational cost, as seen in Fig. 2.2 (Cutanda et al., 2001).

Note that mindlessly increasing the number of nodes stops showing any improvement at

some point, and critical non-plane areas typically require smaller element sizes (Ghavidel

et al., 2018). Moreover, smaller finite elements increase calculation time and introduce
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Figure 2.2 Model complexity in regions with high curvature affects the
computation of rendering of a surface mesh (Chen and Bishop, 1997)

errors in geometry representation, as seen in Fig. 2.3. A mesh convergence study is usually

applied in such cases to obtain an optimal number of elements (Sarabhai et al., 2023).

The so-called influencing points of the increased complexity of the mesh require the mesh

edges to be orthogonal to the surface boundary for increased performance and decreased

error-proneness (Gillebaart et al., 2016). Note that in Fig. 2.2, the mesh becomes denser

when nearing the influencing points, located in this case near the surface boundaries and

at non-planar surfaces. This requires extra calculations, which slows the mesh generation

and the corresponding modeling process. The interpolation based on radial basis functions

(RBFs) attempts to improve the performance of these operations significantly (Kedward

et al., 2017). However, this approach was initially designed for 2D mesh generation and

still requires specific improvements to be widely used in 3D. For example, it has been found

that RBF interpolation may fail when it is applied to a closed-oriented surface, such as an
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Figure 2.3 A mesh convergence study used to find an optimal number of
elements sufficient to estimate values of a parameter – friction factor in this
case (Sarabhai et al., 2023)

entire cylindrical surface. The reason for this is the failure to detect the influencing points

in a completely symmetrical and closed surface, as every point is influential in this case.

The possible solution for it lies in applying hybrid methods that introduce parallelization

to the process, but even then, it requires top-tier CPU capabilities (Zhong et al., 2020).

Mesh modeling assumes that a solid model is defined by tiny finite elements (often

triangular), each of which can be defined by vertices and the position and orientation of

the element in the design space. For example, Fig. 2.4 shows an example of a triangular

finite element defined in an American Standard Code for Information Interchange (ASCII)
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STL file by its normal vector and vertices.

Figure 2.4 An example of a single triangular mesh element in STL for-
mat (Letov et al., 2021)

Most modeling techniques used in GMKs involve surfaces that bind the solid model. The

most popular modeling techniques are boundary representation (B-rep) and constructive

solid geometry (CSG). These techniques often utilize polygonal meshes, which operate in

a trade-off between quality and performance. It is not trivial to balance the trade-off when

modeling complex geometric objects such as heterogeneous cellular structures, which often

results in a high computation time and decreased quality of models due to errors (Cutanda

et al., 2001; Letov et al., 2021).

B-rep techniques have evolved rapidly and incorporated into major GMKs such as Para-

solid (Siemens Digital Industries Software, 2018) and Open Cascade Technology (OCCT) (Open

Cascade S.A.S.U., 2018). B-rep allows the modeling of solids made by revolution, extru-

sion, chamfering, and other operations with solids common in modern CAD in addition to

Boolean operations used prior to B-rep (Stroud, 2006). For example, a torus in B-rep can

be defined as a circle given by

ρ2 − 2ρR cos(θ) + R2 = r2, (2.1)
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where (ρ, θ) are the polar coordinates, r is the radius of the circle and, consequently, of

the torus tube, and R is the distance between the origin and the center of the circle and,

consequently, between the center of the torus and the center of its tube. Polar coordinates

are favorable in the representation of circles and curves in B-rep due to decreased computa-

tion time (Sánchez-Reyes, 1995). This circle then revolved around the z-axis of the design

space.

B-rep suffers from the same inability to model highly complicated geometries such as

the ones in Fig. 1.2, for example. The reason for this is the lack of parametrization and

the need of numerous operations to achieve the modeling of even a simple homogeneous

cellular structure. The overall performance of B-rep methods can be improved by, for

example, hybrid B-rep methods (Song and Cohen, 2019) and optimizing boundary spline

(B-spline) functions (Wang and Qian, 2014; Sasaki et al., 2017). However, the number of

operations limits this optimization, and efforts are needed to model geometrically complex

structures. Even if functions are getting more straightforward, the number of functions

needed to define a complex structure can be overwhelming. Moreover, the surface-to-

volume ratios (S/V ) of the multi-scale and cellular structures can be thousands of times

larger than the CAD models encountered in conventional design, which poses a big issue

for modeling tools based on B-rep.

Non-uniform rational basis splines (NURBS) and their extension to surface modeling

were introduced to mitigate difficulties associated with the modeling of complex structures

and are used widely in B-rep (Rogers, 2001). NURBS surfaces and their trimming allow

interpolation of the desired shape by points with simplicity. The Initial Graphics Exchange

Specification (IGES) and the Standard for the Exchange of Product (STEP) are popular

CAD file formats utilizing NURBS. However, trimming a NURBS surface S(u(t), v(t)) with

a trimming curve C(t) is not always possible, as it is not always possible to retrieve the knot
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vectors u(t) and v(t) for every parameter t (Schmidt et al., 2012). Moreover, attempting to

define an enormous amount of entirely different NURBS surfaces for geometrically complex

shapes makes the design process too tedious for an engineering designer.

While B-rep does not operate with meshes, the mesh representation is still used for

representing and rendering 3D models on screen. For example, even when a circle is defined

in the design space, it still looks like a polygon with several vertices enough to be seen as

a circle. Therefore, a particular conversion from B-rep to mesh is required to allow the

rendering of the model. This straightforward process has been extensively discussed in

the literature (Boender et al., 1994; Brunet et al., 2000). Spline-based B-rep is precise

enough for conventional engineering design. However, as AM allowed more design freedom,

more complicated shapes became manufacturable. There appears to be a trade-off between

having a higher quality of geometry and having a more complex geometry. Note that the

inverse problem is not straightforward and encounters issues often associated with this type

of problem, mostly related to the need to develop a feature recognition algorithm (Raja,

2019; Ben Makhlouf et al., 2019). Some techniques explicitly allow the rendering of shapes

with curvature, and the development of these techniques significantly contributed toward

research on function representation (F-rep) since these shapes often require an explicit

function that controls its curves (Martin et al., 2000; Raviv and Elber, 2001).

The CSG technique can be applied to define boundary conditions of the design space

of a cellular structure (Wang et al., 2021). However, this thesis does not focus on defining

boundary conditions. At the same time, the CSG technique is not well suited for the

geometric modeling of periodic structures (Loh et al., 2018).

Isogeometric analysis (IGA) is a computational approach that was introduced to bridge

the gap between CAD and finite element analysis (FEA) (Hughes et al., 2005). The main

idea behind IGA is to utilize the same mathematical basis for both geometry representa-
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tion and analysis. This allows for seamless integration of the design and analysis phases,

eliminating the need for mesh generation and simplifying the overall process. In conven-

tional FEA, the geometry of the model is often represented using NURBS or other spline-

based techniques, while the analysis relies on piecewise polynomial basis functions such

as Lagrange or Hermite polynomials. This discrepancy between geometric and analysis

representations requires a mesh generation step, which can be time-consuming and prone

to errors, especially for complex geometries. IGA, on the other hand, employs NURBS

or other compatible basis functions for both geometry representation and analysis. This

approach provides several advantages over traditional FEA, including improved accuracy,

elimination of mesh generation, and enhanced integration with CAD tools (Cottrell et al.,

2009). Despite its advantages, IGA also has some limitations. One challenge is the in-

creased computational cost associated with higher-order basis functions. However, ongoing

research aims to develop efficient algorithms and computational techniques to address this

issue (Cazzani et al., 2016).

Subdivision surfaces are a powerful mathematical technique in computer graphics, CAD,

and geometric modeling. Subdivision surfaces are a geometric modeling technique that

recursively refines an initial coarse polygonal mesh into a smooth and more detailed surface

by applying iterative subdivision rules, resulting in a continuous and visually appealing

representation of complex shapes. Subdivision surfaces have since become popular for

modeling complex, smooth, and organic shapes (Catmull and Clark, 1978). This approach

allows for precise control over the surface’s shape and smoothness, making it suitable for

modeling complex geometries. There are various types of subdivision schemes, such as the

Catmull-Clark scheme for quadrilateral meshes (Catmull and Clark, 1978), Loop’s scheme

for triangular meshes (Loop, 1987), and Doo-Sabin scheme for polygonal meshes (Doo and

Sabin, 1978). Each scheme has its own set of subdivision rules and properties, catering to
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different applications and requirements. Some advantages of subdivision surfaces include

compact representation, local control, adaptive refinement, and compatibility with existing

modeling techniques (DeRose et al., 1998). However, disadvantages of subdivision surfaces

include increased computational complexity with each iteration (Peters and Reif, 1997),

difficulty in handling sharp features or creases (Halstead et al., 1993), and the potential

for undesirable artifacts or surface distortions (Warren and Weimer, 2002). Subdivision

surfaces have been widely used in various applications, including computer animation,

video games, and CAD systems. With their ability to efficiently represent smooth and

complex shapes and compatibility with other modeling techniques, subdivision surfaces

have become a valuable tool in geometric modeling.

2.1.2 Volumetric modeling

The volumetric modeling approach, contrarily to the surface modeling approach, models

not only the surface F (X) = 0 but the whole internal structure F (X) ≥ 0 as well. Modeling

of the internal structure enables better control over the geometric model since trimming

and Boolean operations are less computationally expensive as there is no need to generate

a boundary surface (Aremu et al., 2017). Furthermore, volumetric modeling is particularly

useful in applications where internal material properties or stress distribution matter, such

as in medical imaging (Ritter et al., 2011), fluid dynamics (Ashgriz and Mostaghimi, 2002),

or structural analysis (Loh and Choong, 2013). Such flexibility, however, often comes at

the cost of higher computation time to generate volumetric models.

Voxel modeling has been used for eliminating high-frequency details of the object ever

since the introduction of voxels (He et al., 1995; Nooruddin and Turk, 2003), which is

essential for modeling complex structures such as bio-inspired ones. Moreover, voxels have

an advantage in downsampling and acquiring real-world data (Laine and Karras, 2010).



2 Literature review 31

Moreover, there is no need for voxels smaller than the resolution of a 3D printer as they

would not be manufacturable (Telea and Jalba, 2011). Voxelized models support the same

Boolean operations as the mesh models (Aremu et al., 2017). A significant advantage of

voxel modeling for AM lies in straightforward machine learning applications, such as the

prediction of model printability (Gobert et al., 2018).

In voxel modeling, voxels typically have a cubic shape (Strand, 2004) with some non-

cubic approximations such as the ones produced by the marching cubes algorithm (Lorensen

and Cline, 1987; Newman and Yi, 2006). Having the same element tessellated in the

design space results in an inaccurate representation of curvatures in case of insufficient

voxel density. On the other hand, having significantly high voxel density results in high

computational cost. Applying the level-set method (LSM) allows considering a voxelized

3D design space as a set of 2D layers, which improves the computational complexity from

O(n3) to the still highly demanding O(n2) (Adalsteinsson and Sethian, 1995).

Applying voxelization as it is without any additional optimization is still computation-

ally expensive (Kauker et al., 2016). One of the most popular voxel-based simplification

methods involves using sparse voxel octrees, which are based on generating multi-scale vox-

els which could be visible or invisible depending on the resolution, size of the screen, and

point of view (Laine and Karras, 2010). This approach applied to large voxel models can

result in up to six times increased efficiency (Marcus, 2017).

Another common volumetric modeling approach is the finite volume method (FVM)

which generates volumetric mesh similar to surface mesh but with the whole solid body

discretized rather than just the surface. As a result, the body is subdivided into polyhe-

drons, not polygons (Rom and Brakhage, 2011). However, this approach has disadvantages

similar to surface mesh: computation of curvatures is nontrivial due to their geometric

complexity, and the computational expenses rise exponentially with the increase of com-
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plexity.

Note that unit elements in existing geometry discretization techniques are typically

convex, whether they are finite elements or voxels. Convex unit elements require less

computation, but it is required to have more unit elements to model strongly non-convex

shapes, such as bio-inspired cellular structures. This requirement implies a proper mesh-

ing algorithm that considers convexity and curvature and affects meshed models’ quality,

especially those requiring multi-scale modeling (Fuchs et al., 2010). Thus, there is a need

to identify whether non-convex unit elements such as the one sketched in Fig. 2.5 could be

used for the geometric modeling of non-convex geometries. Combining two convex finite

elements into one non-convex would result in a computationally less efficient finite element

and reduce the total number of finite elements, introducing a trade-off between these two

parameters. One of the potential benefits of using non-convex unit elements in volumetric

modeling is the ability to represent more complex and intricate shapes with fewer elements,

as they can better conform to the underlying geometry (Bronstein et al., 2017). This can

lead to more efficient representations in terms of memory and computation, particularly

for models with highly non-convex features or irregularities. Moreover, non-convex unit el-

ements can potentially provide higher accuracy in capturing the object’s geometry, as they

can match the object’s natural shape more closely compared to convex elements (Bronstein

et al., 2017).

However, there are also drawbacks associated with using non-convex unit elements.

One of the primary challenges is that they can be more computationally expensive to

process, as the algorithms for intersection, containment, and other geometric operations

are often more complex for non-convex shapes (De Berg et al., 2008). Furthermore, non-

convex unit elements can lead to difficulty in generating stable and accurate finite element

simulations. The numerical integration and shape functions for non-convex elements can
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Figure 2.5 A mesh of non-convex geometry (Letov et al., 2021)

be more challenging to compute and may exhibit poorer convergence properties (Milbradt

and Pick, 2008).

In recent years, there has been growing interest in exploring non-convex unit elements in

various applications, such as geometric deep learning. For example, the work of Bronstein

et al. (2017) focuses on leveraging non-convex elements to capture complex, non-Euclidean

structures in various data domains, including 3D shapes, graphs, and manifolds. By incor-

porating non-convex unit elements into their learning framework, it is possible to develop

more expressive and flexible models that can better handle the challenges associated with

geometric data.

Volumetric representation (V-rep) modeling is another recently introduced volumet-

ric modeling technique (Massarwi and Elber, 2016). It utilizes elliptic partial differential

equations and modifies the design space to have various unit volumes that handle extreme
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geometric complexity. The approach is superior to B-rep modeling in terms of geometric

complexity handling (Wassermann et al., 2020) and is more adaptable for simulation pur-

poses (Antolin et al., 2019). However, it suffers from an issue like B-rep: while in B-rep,

two surfaces collide by an edge or a group of edges, and in V-rep, two volumes collide by

a surface or a group of surfaces since surfaces are, in general, more computational than

edges (Massarwi et al., 2019). This can dramatically increase the computational expenses

in cases with many unit volumes. Evidence shows that a hybrid B-rep approach can be

applied to V-rep to increase its performance (Song and Cohen, 2019). The torus used as

an example in the previous section can be represented in V-rep as a union of five solids of

revolution, as seen in Fig. 2.6. Note that the “core” of the torus is required to be a separate

solid to avoid convergence of the other four solids to zero.

Figure 2.6 A torus is constructed using five solids of revolution in volumetric
representation modeling (Wassermann et al., 2020)

Volumetric modeling with iso-geometric finite elements utilizes finite cubic elements

that are transformed to fit the desired model better by, for example, moving vertices of the

default cube to new positions as illustrated in Fig. 2.7a. Such effect is achieved, in this
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example, by an affine shear and scale transformation N : Γ 7→ X that transforms a cube in

the Γ = (ξ, ζ, η) coordinates to the X = (x, y, z) coordinates of the real design space. The

resulting model consists of numerous iso-geometric finite elements, as shown in Fig. 2.7b.

However, this method inherits drawbacks of polygonal-based and voxel modelings. These

disadvantages include, for example, having irregularities at regions with high curvature.

Even though the variety of shapes is larger than having only one type of voxel, the finite

elements are still limited to having six faces.

Figure 2.7 (a) A transformation N of a cubic finite element to a new shape
and (b) the geometric modeling of a structure with different stages of refine-
ment with iso-geometric finite elements (Burkhart et al., 2010)

The described drawbacks of voxel modeling suggest modifying volumetric modeling

techniques to fit better the rising demand for a geometric modeling approach that could

support more complicated geometry. Using non-cuboid voxels, which often find their use

in computer graphics rather than in geometric CAD modeling, improves the performance
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but introduces significant distortion to the model they are applied to. However, there is

evidence that using a variety of unit volumes in a single model can dramatically improve

the performance and quality of the model. The IRIT1 modeling environment (Eggli et al.,

1997) does this by allowing the modeling of so-called VModels with non-conventional unit

volumes, which allows storing 3D data in much smaller sized IRT2 files native to the IRIT

modeling environment (Hahmann et al., 2012).

Overall, one of the main challenges associated with volumetric modeling is the increased

memory and computational resources required compared to surface models. Since volumet-

ric models represent not only the surface but also the internal structure of an object, they

often require more storage space and processing power (Gavryushkina, 2021). For example,

Fig. 2.8 shows that the amount of voxels needed to represent an original geometry is sig-

nificantly larger than the number of triangular mesh elements. In contrast, the curvatures

are represented less accurately with voxels. A single triangular mesh element requires three

vertices and a normal vector defined. A single voxel is defined by its coordinates and a

binary mask. This can make volumetric modeling less suitable for certain applications,

particularly those with limited computational resources or tight performance constraints,

such as real-time rendering or interactive applications (Aremu et al., 2017).

Another challenge is the conversion between surface and volumetric representations.

This conversion process can be complex and may introduce errors or artifacts, especially

when dealing with complex geometries or intricate internal structures. Ensuring that the

generated volumetric model maintains the essential characteristics of the original surface

model can be challenging and may require sophisticated algorithms and techniques (Noorud-

din and Turk, 2003; Strand, 2004).

1Named after the wife of its creator Gershon Elber – Irit
2Short for IRIT
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Figure 2.8 Triangular mesh and voxel methods for representing original
geometry representations. Adapted from (Schnös et al., 2021).

Moreover, voxel-based representations, commonly used in volumetric modeling, can

suffer from aliasing artifacts and a loss of fine details when the voxel resolution is insufficient.

A higher voxel resolution is needed to capture high-frequency details, increasing the memory

and computational requirements. This trade-off between accuracy and performance is a

common challenge in volumetric modeling applications (He et al., 1995; Laine and Karras,

2010).

2.1.3 Hybrid modeling

The respective benefits of surface-based and volumetric geometric modeling approaches

have led to the development of hybrid modeling techniques that aim to capitalize on the

strengths of both methods. Surface-based methods, well-established in the AM process,

offer significant ease of manipulation when working with geometry. In contrast, volumet-

ric methods, particularly voxel-based models, provide greater computational flexibility by

facilitating operations with 3D matrices (Wang et al., 2005; Tang et al., 2019).

The development of hybrid modeling techniques has involved various approaches, such

as integrating voxel-based models with surface representations or combining different vol-

umetric and surface-based models within a single framework (Wang et al., 2005). For
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example, the work of Wang et al. (2005) presents a hybrid modeling method that con-

structs volumetric models from surface representations, enabling the efficient manipulation

of complex geometries and facilitating Boolean operations. Another example is the work of

Tang et al. (2019), which introduces a hybrid mesh representation that combines surface-

based and volumetric meshes hybrid models that incorporate surface-based and volumetric

elements to improve the efficiency and quality of 3D shape processing and analysis.

However, hybrid modeling techniques are not without limitations, as they inherit con-

straints from the original geometric modeling frameworks, such as limited parametrization.

These limitations encompass the inability to model non-linear variation of geometric pa-

rameters and the restricted amount of controllable parameters (Letov and Zhao, 2022).

2.1.4 Function representation concepts and their application in geometric

modeling of cellular structures

Function representation, here onwards referred to as F-rep, is a mathematical approach used

in geometric modeling and computer graphics for the representation and manipulation of

geometric objects (Pasko et al., 1995). This method describes a shape or object by defining

an implicit function, which assigns a scalar value to each point in the 3D space. The

object’s surface is represented by the zero set of the implicit function, i.e., the set of points

in space where the function value is equal to zero (Bloomenthal et al., 1997).

F-rep offers several advantages over other geometric modeling techniques, such as the

ability to represent complex shapes, seamless blending of objects, and smooth transitions

between different geometric features (Pasko et al., 1995). Moreover, F-rep can handle

both solids and surfaces, allowing for efficient representation of complex and heterogeneous

structures (Pasko and Adzhiev, 2004).

In F-rep, a solid is considered to be defined by its defining real-valued function F as
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follows:

F (X) ≥ 0, (2.2)

where X = (x, y, z) ⊂ R3 is the design space, such that F (X) ≥ 0 is the solid itself,

with F (X) = 0 being the surface of the solid, and F (X) < 0 is the rest of the design

space (Pasko et al., 1995). Note that the design space X is not limited by existence in the

3D Euclidean space E3, as printing of non-Euclidean geometry is a topic of interest in AM

nowadays (Zurlo and Truskinovsky, 2017; Mensch et al., 2021).

Even though F-rep existed before the rise of AM, using real functions for representing

solid models demonstrated advantages in providing higher design freedom compared to

the conventional Boolean methods of modeling (Shapiro, 1994). Modern F-rep methods

also allow the modeling of both explicit and implicit functions. In this thesis, a function

F : Rn 7→ R is called explicit if an expression defines F . This expression is a relation

solved for one of its independent variables, for example, F (x) := x2 + 2x + 1. A function

F : Rn 7→ R is called implicit if F is defined by a relation not solved for one of its

independent variables, for example, x3F 3(x) = F (x) + 2x.

Comparing F (X) with 0 in F-rep allows the modeling of implicit surfaces bounding the

solid body without calculations needed to convert them into explicit surfaces. For example,

a solid torus TS is implicitly defined by

TS(x, y, z) : −F (X) =
(√

x2 + y2 −R
)2

+ z2 − r2 ≤ 0, (2.3)

where x, y, and z are the Cartesian coordinates, R is the radius from the center of the hole

to the center of the torus, and r is the radius of the tube.

The torus T can be explicitly defined by its standard form derived from solving F (X) =
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0 for z:

T(x, y, z) : z = ±
√

r2 −R2 + 2R
√
x2 + y2 − x2 − y2. (2.4)

Equation 2.4 requires additional calculations to derive it from the standard form in

Equation 2.3. While solving F (X) = 0 for the torus T results in Equation 2.4, solving

F (X) ≥ 0 for the solid torus TS requires more conditions that need to be taken into account.

Moreover, there are cases when an explicit form of the function cannot be achieved, such as

the functions defined by x2y2 = (x + y)3 −√xy and x
√

cos(xy) = ey. Thus, using implicit

functions as an input is a significant advantage of F-rep, which amplifies further because

cellular structures can be defined as a set of functions.

Initially, implicit surfaces used in F-rep had limited support for R-functions, sweeping,

and other operations that are common for conventional CAD systems. F-rep methods

use non-trivial solutions to this issue to mitigate this limited support, such as moving

solids (Sourin and Pasko, 1996). The R-function support drastically increases the flexibility

of geometric modeling by allowing a complete definition of geometry with the terms of real

analysis (Shapiro, 2007). Naturally, such a viable tool is now found to be supported by

most of the F-rep geometric modeling approaches.

Still, there are certain disadvantages to using the F-rep modeling. Defining a geomet-

rically complex structure, such as a heterogeneous cellular structure, is complicated by the

necessity of defining rules by which lattice parameters or topology vary throughout the

structure in a set of mathematical functions. The review of related literature identified

that such a process could be arduous for an engineering designer and that there is no tool

so far that would simplify this design process significantly enough, while it is clear that

AM could benefit from such a tool (Liu et al., 2017). Moreover, the function by which a

geometrical shape is formed is not clearly defined in some cases, such as in the bio-inspired
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design (Letov et al., 2021).

It was shown that F-rep is applicable to the geometric modeling of cellular structures,

as their geometry can be defined simply by periodic functions (Pasko et al., 2011). For

example, HyperFun – an F-rep programming language – can model a simple homogeneous

cellular structure illustrated in Fig. 2.9 in a simple loop (Pasko et al., 1999). Note that

this representation is simplistic as nodes are not modeled, and the cellular structure is ho-

mogeneous. Also, note that HyperFun used to be open-source but is not publicly available

anymore (Adzhiev et al., 2020). The ability to render periodic structures and mathemati-

cally well-defined Boolean operations between functions allowed F-rep to find its application

for modeling heterogeneous cellular structures (Alkebsi et al., 2021; Wang and Tamijani,

2022).

Figure 2.9 A homogeneous cellular structure with the simple cubic topology
generated with HyperFun (Letov and Zhao, 2022)

While modeling a TPMS is not complicated in F-rep, as can be seen in the example with

HyperFun in Fig. 2.10a, the resulting structure in Fig. 2.10b is a TPMS with no thickness

and thus cannot be manufactured. F-rep requires additional effort to derive equations
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needed to derive a solid structure based on a TPMS. In this example, the model is set to

F (X), which defines the boundary surface F (X) = 0 in 3D Cartesian coordinates.

Figure 2.10 (a) A code snippet of a HyperFun program that generates a
gyroid surface and (b) the resulting model (Letov et al., 2021)

2.1.5 Multi-scale modeling

Geometric modeling of complex structures often involves addressing various challenges,

including incorporating multi-scale modeling support, particularly for bio-inspired struc-

tures (Chen et al., 2017). These structures often require sufficient and accurate visual

information at both meso- and macro-scales to be effectively represented (Rawson et al.,

2015).

In geometric modeling and computer graphics, the level of detail (LOD) is widely applied

to reduce computational costs by adjusting the model’s complexity according to the required

level of detail. This involves decreasing or increasing the number of details in the model

based on the desired LOD. Figure 2.11 illustrates how the complexity of the Stanford

bunny’s surface mesh model changes with the number of polygons (Luebke et al., 2003).

Higher LODs correspond to more detailed renderings.

Typically, LOD is manually or automatically associated with CAD features, as shown

in Fig. 2.12. However, bio-inspired structures are often designed using parametric modeling
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Figure 2.11 Reducing the complexity of a 3D model by adjusting its level
of detail, which directly corresponds to the number of polygons required for
rendering (Luebke et al., 2003)

techniques rather than feature-based approaches, leading to ambiguity in determining the

features corresponding to each LOD.

Figure 2.12 Levels of detail associated with Boolean operations in feature-
based CAD (Borrmann et al., 2015)

Interestingly, the challenge of LOD ambiguity is not limited to bio-inspired structure

modeling but also arises in other research areas, such as geoinformatics and medicine. For

example, in geoinformatics, researchers may need to consider 3D scans of large archae-

ological sites, like the Maya civilization, from various LODs ranging from an entire city

(LOD0) to intricate column ornament details (LOD3) (Agugiaro et al., 2011). Similarly, in
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medicine, a multi-scale geometric modeling approach is necessary for accurately modeling

a human heart, where even minor defects can have significant consequences (Rawson et al.,

2015; Sacks et al., 2017).

Despite the potential benefits of multi-scale modeling, current voxelization methods are

not adaptive due to difficulties in clustering voxels (Weiler et al., 2000). This limitation

forms a research gap due to the absence of an appropriate adaptive voxelization algorithm

for geometric modeling. An effective adaptive voxelization approach would enable auto-

matic changes in voxel size based on the user’s point of view and the corresponding LOD.

Existing methods struggle to represent critical features of a part on a larger scale using

voxels (Seemann et al., 2016) and become inefficient on smaller scales (Kauker et al., 2016).

Key challenges in this area include determining which features should be associated with

LODs, recognizing and classifying these features, and identifying the appropriate voxel size

for accurate representation.

2.2 Challenges in geometric modeling of complex structures

The bio-inspired design has gained significant attention in recent years due to its potential

for creating innovative, sustainable, and efficient solutions to various engineering challenges.

However, the inherent complexity of biological structures often poses challenges in the

geometric modeling of these designs. This section of the thesis will discuss some of the

primary challenges and limitations of geometric modeling to support the bio-inspired design.

Designers frequently encounter difficulties when attempting to create micro-structures

that mimic the features of animals or plants, particularly during the conceptual develop-

ment phase when sketching ideas (Velivela et al., 2021).

One of the main challenges in the geometric modeling of bio-inspired designs is the
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intricate and often hierarchical organization of biological structures. These structures are

characterized by multi-scale features, which can be challenging to replicate in a compu-

tational model (Wen et al., 2014). Biological structures often exhibit unique structural

properties, such as anisotropy, heterogeneity, and graded properties, which are challenging

to model and replicate in engineering materials (Gibson, 2012). For example, it can be

seen from Fig. 2.13 that wooden materials can be replicated only by foam materials which

are typically difficult to control and only in certain conditions. Due to the complexity and

multi-scale nature of biological structures, geometric modeling of bio-inspired designs can

demand significant computational resources, which may not be readily available or acces-

sible to all designers (Fang et al., 2017). The successful geometric modeling of bio-inspired

designs should consider the limitations of manufacturing processes, such as additive man-

ufacturing or traditional machining techniques, which might not be capable of producing

the intricate features of bio-inspired designs (Stratakis et al., 2020).

Figure 2.13 (a) The Young’s modulus–density and (b) the strength–density
chart for engineering materials, including woods (Gibson, 2012)

Consequently, designers often simplify the design by redefining the concept and seeking

inspiration from other animals or organisms (Federle et al., 2002; Song et al., 2016). One

example of such design simplification is the following design case study of a dental implant
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masking cap. In this case study, an initial surface concept inspired by the feet of a gecko

(Gekkota) in Fig. 2.14 was transitioned to a simpler design inspired by the claw of a common

black ant (Lasius niger) in Fig. 2.15 due to modeling and fabrication challenges (Huang

et al., 2010; Velivela, 2018). The initial gecko-inspired concept aimed to provide a sticky

surface for dental implants during chemical etching. However, designing the setae (micro-

hair) of the gecko’s feet proved challenging, as was the fabrication process. Inspired by an

ant’s claw, the final design is significantly less complex than the initial bio-inspired concept

but serves its intended function sufficiently.

This case study is just one example of how bio-inspired designs can be affected by geo-

metric modeling and manufacturing limitations. Other examples include bio-inspired cellu-

lar structures resulting from topology optimization, which often require advanced graphics

processing capabilities and highly capable geometric modeling tools (Alsheghri et al., 2021).

2.3 Challenges in the geometric modeling of heterogeneous

cellular structures

Cellular structures, a subset of bio-inspired structures in this research, are inspired by the

intricate formations found in nature, such as the hexagonal matrix of honeycombs, the com-

plex patterns of spider webs, or the porous structures of bones. These structures, although

complex, have been increasingly manufactured via AM techniques due to its advancements

in the past two decades (Dong et al., 2017). Cellular structures offer unique properties,

such as optimal performance-to-weight ratio, variable elasticity, and water absorption or re-

sistance, which are not typically seen in conventionally manufactured parts (Frulloni et al.,

2007; Mart́ınez et al., 2016; Schumacher et al., 2015).

Geometric parameters like the cross-section of the lattice beam or the truncation of
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Figure 2.14 The conceptual sketch of a gecko-inspired surface that sticks
to the implant surface (Velivela, 2018)

some topologies may vary across the structure, contributing to a different kind of hetero-

geneous lattice. While these parameters are not commonly studied in AM, they have seen

extensive use in other industries, such as construction, where I-beams offer optimal bend-

ing properties (Kloft et al., 2023). Moreover, truncated cube topologies can mitigate node

stress concentration, depending on the truncation size (Hedayati et al., 2016). Currently,

geometric modeling techniques for such optimized structures are yet to be developed (Letov

and Zhao, 2022, 2023a).
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Figure 2.15 Two conceptual designs inspired by an ant’s claw (Velivela,
2018)

Bio-inspired cellular structures, which are primarily heterogeneous, can mimic complex

geometric shapes found in nature and offer a wider range of design possibilities (Zheng,

2019). They are primarily used in specialized cases where unique biological properties are

needed (Hancock et al., 2012; Liu et al., 2014). For example, a heterogeneous sponge-like

cellular structure can make a part ultra-lightweight while maintaining strength and energy

absorption (An and Fan, 2016).

Geometric modeling of homogeneous cellular structures is well-documented (Kucewicz

et al., 2018). However, the modeling of heterogeneous cellular structures is more complex

due to their semi-periodic nature. Modeling these structures requires various techniques

to capture features of different sizes and shapes, such as nodes and struts (Leonardi et al.,

2019). This complexity often leads to substituting these models with homogenized ver-

sions or 2D cross-sectional analogs, neither of which provide accurate information about a
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heterogeneous object (Tang et al., 2019).

Traditional CAD systems present challenges when designing cellular structures. The

primary issue lies in the difficulty of describing cellular structures using Boolean operations,

akin to the challenge of associating LODs to CAD features (Liu et al., 2021b). Creating het-

erogeneous cellular structures with descriptive CAD systems is even more challenging due

to their inherent complexity. The geometric modeling of heterogeneous cellular structures

often requires large amounts of computational resources due to the intricate and variable

nature of these structures. The increased complexity may lead to longer processing times,

negatively impacting the overall design and manufacturing process. High-performance com-

puting and parallel processing techniques can help address this issue by reducing the com-

putational time required for modeling and analysis (Abueidda et al., 2017), but they are

not readily accessible to average design engineers.

Heterogeneous cellular structures often consist of numerous interconnected elements,

such as struts and nodes, which can lead to significant memory requirements when modeled

and analyzed. Efficient memory management techniques and data compression strategies

are crucial for handling the large-scale data associated with these structures.

Accurate and efficient mesh generation is critical for modeling heterogeneous cellular

structures. It directly impacts the quality of the resulting FEA and computational fluid

dynamics (CFD) simulations. Automatic mesh generation and optimization techniques that

can adapt to the complex geometry of these structures are essential for ensuring accurate

and efficient simulations (Aage et al., 2017).

Heterogeneous cellular structures often exhibit multi-scale properties, with features

ranging from macroscopic to microscopic scales. As discussed in Section 2.1.5, this neces-

sitates the development of multi-scale modeling techniques that can capture the geometric

and mechanical behavior of these structures at different scales while maintaining compu-
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tational efficiency. Due to the variability in heterogeneous cellular structures, adaptive

modeling techniques that can automatically adjust the model’s resolution and parameters

based on the desired level of detail and computational resources available are essential for

efficient geometric modeling.

It has been proposed that since bio-inspired structures are challenging to model, a

potential method to model such structures could be bio-inspired as well (Letov and Zhao,

2021). Indeed, discretization plays a crucial role in both geometric modeling and the

structure of living organisms. In geometric modeling, discretization allows for control

over mesh size and density, which in turn influences the quality and complexity of the

model. Similarly, living organisms comprise small building blocks called cells (Letov and

Zhao, 2021). One example of discretization in nature is the tessellation of the epidermis,

the upper layer of human skin, as shown in Fig. 2.16. This discretization resembles the

triangular mesh used in geometric modeling.

Figure 2.16 Skin texture (Li et al., 2022a)

Recent research has started exploring bio-inspiration for modeling and simulating com-

plex structures, analogous to how deep neural networks are inspired by neuron activity in
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the brain (Ivakhnenko and Lapa, 1967). For example, Dimas and Buehler (2014) proposed

a novel modeling technique for bio-inspired composites, which focuses on simulating 2D

cross-sections of the composite. Fantini et al. (2016) developed a method for designing

bio-inspired structures based on Voronoi lattices.

Considering discretization in nature, examining living organisms with easily analyzable

structures, such as humans, is essential. The evolutionary process has led to the devel-

opment of optimal shapes and structures in living organisms over billions of years. One

such example is the scutoid cells, which are 3D solids bounded by two polygons lying in

parallel surfaces (not necessarily planar) and with vertices interconnected either by curves

or by Y-shaped connections, as seen in Fig. 2.17 (Gómez-Gálvez et al., 2018). However,

bio-inspired algorithms or techniques for geometric modeling have yet to be developed.

Figure 2.17 Two scutoids (a) shown transparent separately and (b) shown
opaque and transitioning one into another (Gómez-Gálvez et al., 2018)

Surface mesh modeling mimics discretization in a manner similar to how human skin

consists of skin cells but does not model the interior. Voxels typically discretize a design

space into cubes, while cell geometry is not necessarily cubic (Savio et al., 2018). Although

non-cubic voxels, such as body-centered cubic (BCC) and face-centered cubic (FCC) vox-
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els, have been investigated, they have not demonstrated significant advantages over cubic

voxels (Strand, 2004). Sparse voxel octree techniques enable modeling with voxels of differ-

ent sizes (Laine and Karras, 2010); however, the cubic shape of voxels remains unchanged,

limiting the variety of shapes that can be represented.

Given that bio-inspired structures originate from nature, it is crucial to be able to model

a variety of shapes. Both mesh and voxel modeling face computational and accuracy-related

challenges when applied to complex geometric objects. Consequently, for bio-inspired geo-

metric modeling, other bio-inspired geometry classes should be considered (Schulz, 2009).

In nature, numerous shapes and sizes of cells together converge into a living body. These

parameters are defined by the cell division process, which in turn is defined by genetics and

external conditions. Thus, it is required to consider the cell division process in more detail.

Appendix A presents a detailed case study demonstrating the practical implementation

of a bio-inspired geometric modeling approach. This approach leverages the long axis rule

(LAR) and surface-to-volume ratio (SVR) minimization techniques to create a more effi-

cient and adaptive solution than traditional modeling methods. However, there are several

limitations to this approach. First, the LAR method can generate a high level of inconsis-

tency between volumetric cells and a large variety of shapes. Second, the SVR method may

lead to volumetric cells that do not fit the framework, as they correspond to 2-manifolds of

genus higher than 0. Additionally, the manual combination of the LAR and SVR methods

may not result in an optimal solution. Typically, the development of such an approach

requires a substantial team of programmers and mathematicians working together, which

can be resource-intensive and time-consuming. Overall, while the bio-inspired geometric

modeling approach offers promising improvements over traditional methods, it still faces

significant challenges that need to be addressed outside of the scope of this thesis.
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2.3.1 Challenges associated with surface modeling to model heterogeneous

cellular structures

Applying surface modeling techniques like the polygonal mesh, B-rep, CSG, IGA, and

subdivision surfaces to design complex structures comes with unique challenges related

to accurately representing intricate geometries, managing computational demands, and

ensuring efficient mesh generation.

Polygonal mesh often represents 3D objects using interconnected polygons (usually tri-

angles or quadrilaterals). Creating a high-quality polygonal mesh can be challenging for

complex structures with intricate details. The mesh must accurately capture the geometry

while minimizing the number of polygons used (Botsch and Kobbelt, 2004). Addition-

ally, the mesh quality directly impacts the results of FEA and CFD simulations (Hirt

and Nichols, 1981). Bio-inspired structures often exhibit intricate and irregular geometric

features. Representing these features using standard surface modeling techniques can be

difficult and time-consuming, as these techniques may struggle to capture the high level of

detail and organic nature of the geometry.

B-rep models use a combination of vertices, edges, and faces to define the boundaries

of 3D objects. Complex structures with organic shapes, intricate details, or multiple inter-

connected components can be challenging to model and manipulate using B-rep due to its

reliance on precise topological relationships (Lee and Lee, 2001). Maintaining a consistent

and accurate topology becomes increasingly challenging as the complexity of the structure

increases.

CSG models represent 3D objects using a combination of primitive shapes and Boolean

operations. Designing complex structures with CSG can be challenging due to the lim-

itations of Boolean operations, which may not adequately capture the intricate details
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and relationships present in the structure (Liu et al., 2021b). Creating and modifying

complex structures in CSG often requires manual input and manipulation, which can be

time-consuming and error-prone (Rossignac and Requicha, 1986).

IGA unifies the geometric representation of a structure with its analysis using the same

mathematical basis, such as NURBS or T-splines. While IGA provides a more accurate

representation of complex structures, it can also increase computational complexity and

demands, especially when dealing with large-scale structures or intricate details (Cottrell

et al., 2009). Additionally, IGA requires specialized knowledge and expertise to properly

implement and use, which may not be readily available to average design engineers (Bazilevs

et al., 2010).

Subdivision surfaces enable the creation of smooth and organic shapes by recursively

refining an initial coarse mesh. While this technique is well-suited for modeling complex,

organic shapes, it can be computationally expensive for large-scale structures or those with

intricate details (Stam, 1998). Additionally, controlling the local and global properties of

the generated surfaces can be challenging, as it often requires manual input and fine-tuning

(Zorin et al., 1997).

Bio-inspired, homogeneous, and heterogeneous cellular structures often exhibit intri-

cate and irregular geometric features. Representing these features using standard surface

modeling techniques can be difficult and time-consuming. These techniques may struggle

to capture the high level of detail and organic nature of the geometry (Vaxman et al.,

2016). Such structures may have features at multiple scales, ranging from macroscopic

to microscopic. Traditional surface modeling techniques may not efficiently handle multi-

scale modeling, which is necessary to accurately represent the geometric and mechanical

behavior of these structures at different scales. Designing these structures using surface

modeling techniques can be computationally intensive, especially for models with a high
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level of detail and complexity. This may increase processing times, negatively impacting

the overall design and manufacturing process (Botsch and Kobbelt, 2004).

Overall, while surface modeling techniques offer powerful tools for designing complex

structures, they also present challenges related to accurately capturing intricate geometries,

managing computational demands, and ensuring efficient mesh generation. Overcoming

these challenges requires a deep understanding of the specific technique and the develop-

ment of novel approaches that address the unique requirements of complex structures (Liu

et al., 2021b).

2.3.2 Challenges associated with volumetric modeling to model heterogeneous

cellular structures

Applying volumetric modeling techniques such as voxels, V-rep, and FVM to design com-

plex structures presents several challenges. Complex structures may have intricate and

irregular geometric features. Volumetric modeling techniques can struggle with capturing

these features accurately, leading to approximations and potential loss of geometric fidelity.

This can be especially problematic in applications where high precision is crucial (Batty

et al., 2007). Bio-inspired and heterogeneous cellular structures often have intricate and

irregular geometric features.

Volumetric modeling techniques, such as voxel-based approaches, often consume large

amounts of memory due to the discretization of the entire volume, leading to significant

storage and computational costs. This can be a limitation when working with complex

structures such as bio-inspired and heterogeneous cellular structures, especially at high

resolutions (Laine and Karras, 2010).

Bio-inspired and cellular structures often require fine discretization to capture intricate

details. However, volumetric techniques such as voxel-based representations can suffer from
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scalability issues, as the number of elements increases rapidly with finer discretization,

resulting in memory and computational challenges (Roettger et al., 2003).

Generating high-quality meshes for FEA or computational fluid dynamics (CFD) sim-

ulations from volumetric models can be challenging, especially for bio-inspired and het-

erogeneous cellular structures with intricate geometries and topologies. Ensuring accurate

simulation results requires careful mesh generation and processing (Hirt and Nichols, 1981).

Complex structures often have intricate and irregular geometric features, which may not

be easily represented using a single modeling technique. Hybrid approaches aim to cap-

ture these features more accurately by combining different methods, but this can lead to

increased complexity in the overall modeling process and may introduce new challenges in

terms of geometric fidelity.

2.3.3 Challenges associated with hybrid modeling to model heterogeneous

cellular structures

Applying hybrid geometric modeling techniques to design complex structures presents sev-

eral challenges, as these techniques aim to combine the advantages of various modeling

approaches. Integrating these different techniques seamlessly can be challenging, as they

may have distinct data structures, mathematical foundations, and computational require-

ments (Shapiro, 2002).

Developing efficient data structures and algorithms for handling these different tech-

niques can be challenging, as it requires careful consideration of memory consumption,

processing times, and scalability. Generating high-quality meshes from hybrid models for

FEA or CFD simulations can be challenging, especially for bio-inspired and heterogeneous

cellular structures with intricate geometries and topologies. Ensuring accurate simulation

results requires careful mesh generation and processing, which the presence of multiple
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modeling techniques may further complicate.

2.4 Existing software tools for the geometric modeling of cellular

structures

As the AM industry has expressed growing interest in modeling heterogeneous cellular

structures, various software tools have emerged due to academic research and CAD providers’

efforts.

Generally, a prevalent issue among many cellular structure modeling and CAD tools

is their predominant support for the Microsoft Windows OS. This limitation stems from

the fact that most GMKs, responsible for mathematical computations and rendering, have

been developed specifically for Windows. GMKs depend heavily on GPUs for parallel com-

puting, and Windows offers time-tested proprietary GPU drivers. However, Apple macOS

has recently introduced the M1 CPU, which can handle parallel computing in a manner

similar to a GPU (Becker et al., 2021). Furthermore, Linux provides greater customiza-

tion potential and can easily support proprietary GPU drivers while maintaining lower

OS performance than Windows. As macOS and Linux are based on the Unix OS family,

developing cross-platform software tools between these systems becomes more accessible.

Consequently, it is possible to expect more cross-platform geometric modeling tools in the

future.

Open-source geometric modeling tools have demonstrated their ability to improve the

design experience for AM (Letov and Zhao, 2023b). However, the literature review reveals

a general lack of free and open-source (FOSS) applications in engineering and, more specif-

ically, design in AM (Junk and Kuen, 2016). This scarcity of FOSS applications results in

a shortage of lean, agile, and accessible engineering design tools (Brasseur, 2018).
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This section delves into software packages for the geometric modeling of heterogeneous

cellular structures. Section 2.4.1 discusses the use of surface modeling software tools to

create cellular structures and their limitations. Section 2.4.2 highlights the advantages

of tools that use voxel-based modeling for heterogeneous cellular structures and the use

of these tools for extracting geometry from computer tomography scans. Section 2.4.3

discusses tools that use surface and volume modeling methods for a more comprehensive

approach to designing complex, bio-inspired cellular structures. Section 2.4.4 provides a

comparative analysis of various tools and their capabilities in modeling cellular structures,

showcasing their strengths and limitations. Finally, the graphical user interface of software

packages for the geometric modeling of cellular structures is discussed in Section 2.4.5.

2.4.1 Surface modeling-based software tools

Surface modeling is a vital approach in cellular structure modeling, and several tools have

been developed to facilitate this process. For instance, Autodesk Netfabb (Autodesk Inc.,

2017) requires users to provide a design space or select one from standard types. Users

then select a topology from a substantial list, which includes beam-based and triply periodic

minimal surfaces (TPMS). However, user customization of this list is not possible. Autodesk

Netfabb also permits the application of a linear gradient field to the design space, which

varies the thickness of the cellular structure. However, this gradient does not allow changes

to other cellular parameters and only supports linear variations.

Sulis Lattice (Gen3D Ltd., 2019) is another tool for modeling cellular structures. It

allows importing a CAD model to be used as a design space for lattice generation. Like

Autodesk Netfabb, Sulis Lattice also provides a list of topologies and enables adding a linear

gradient distribution of thickness. Nonetheless, it does not support non-linear thickness

distribution or variation of parameters beyond beam or surface thickness.
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Rhinoceros 3D (Robert McNeel & Associates, 2020a) offers more versatility in modeling

heterogeneous cellular structures. As a parametric CAD tool, it allows fine-tuning of geo-

metric parameters and the scripting of designs with embedded Python support (Gao et al.,

2023). Within Rhinoceros 3D, Grasshopper 3D (Davidson, 2009) provides visual scripting

of parametric models and support for custom plugins that can aid cellular design. Intralat-

tice (Kurtz, 2009), developed as a part of research efforts preceding this work, is one such

plugin that can model cellular structures with custom topologies. However, Intralattice’s

capabilities are limited to modeling conformal cellular structures, which strive to fit a cus-

tom design space. For example, the tire design shown in Fig. 2.18 has the design space filled

with a conformal cellular, which can be considered homogeneous in cylindrical coordinates.

Intralattice does not support heterogeneity in other geometric cellular parameters.

Figure 2.18 Tire designs with different lattice topologies, which include (a)
bare design space, (b) grid lattice, (c) X lattice, and (d) vintiles lattice modeled
with Intralattice (Kurtz, 2009)

Crystallon (F EQUALS F LLC., 2019), another plugin for Rhinoceros 3D, allows con-

formal cellular modeling with a topology chosen from a list of available ones (Letov et al.,

2021). Like Intralattice, Crystallon does not support the modeling of heterogeneous cellular
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structures. However, literature reports a case where Intralattice and Crystallon were used

in the same cellular generation project (Garćıa-Dominguez et al., 2020). Intralattice was

preferred for defining topologies due to its ease, while Crystallon was better at generat-

ing nodes. To address the limitations of Intralattice and Crystallon, Dendro (ECR Labs,

2018), another plugin for Grasshopper 3D, was developed. Dendro uses voxel modeling

techniques provided by OpenVDB (Academy Software Foundation, 2012) to model linearly

heterogeneous cellular structures. However, it does not support non-linear heterogeneity.

2.4.2 Volumetric modeling-based software tools

Voxel-based modeling is increasingly popular due to its potential applications in hetero-

geneous cellular structure modeling. Selecting the appropriate voxel size for conventional

manufacturing can be ambiguous, particularly for solid models with significant variations

in the radius of curvature. However, in AM, the voxel size does not need to exceed the

tolerance of a 3D printer, as a higher voxel resolution would not be manufacturable (Letov

et al., 2021). Assigning material in the voxelized model of a multi-material cellular struc-

ture is straightforward, as each voxel can be designated a different material (Liu et al.,

2022).

An alternative approach to obtaining volumetric CAD models of heterogeneous cellular

structures and other bio-inspired structures is exporting geometry from computer tomogra-

phy scans. Tools such as Materialise Mimics Materialise NV. (2012) and Dragonfly (Object

Research Systems, 2018) can retrieve these models. Materialise Mimics can segment im-

ported medical images, which can then be converted into solid models and filled with a

cellular structure using the Materialise 3-matic tool. Similarly, the output solid models in

Dragonfly can be subjected to various manipulations. For instance, a porous bone struc-

ture can be visualized as a graph with all the nodes and links extracted (Reznikov et al.,
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2020). These tools offer a unique perspective on understanding biological structures and

are often employed in AM for prosthetic parts. It is important to note that while biological

structures are typically heterogeneous, existing tools frequently lack precise control over

the geometric parameters of heterogeneous cellular structures (Letov and Zhao, 2021).

2.4.3 Hybrid modeling-based software tools

Implicit modeling approaches offer significant advantages when applied to the geometric

modeling of heterogeneous cellular structures. Explicit modeling techniques require indi-

vidually modeling each beam or surface region of a cellular structure. In contrast, implicit

modeling techniques provide high-level functions that simplify complex geometry definition

by bundling lower-level functions (Nguyen et al., 2021).

nTopology (nTopology, Inc., 2017), a popular heterogeneous cellular modeling tool, al-

lows users to define topologies as skeletal graphs, which can be thickened to obtain the de-

sired solid cellular structure model. This approach is based on voxelizing the space around

the skeletal graph and adding or removing layers of voxels to adjust the thickness (nTopol-

ogy, Inc., 2017). In addition to linear thickness variation, nTopology introduces topology

optimization to control thickness based on estimated stresses. Topology optimization can

be considered an implicit geometric modeling method due to limited user input and control

over geometric parameters (Hamri et al., 2010).

Randomized cellular structures such as the Voronoi scaffold illustrated in Fig. 1.8a

often require specialized approaches. For example, consider a Voronoi scaffold with no

unit cells in common sense. Designing a Voronoi scaffold requires setting general geometric

parameters of the cellular structure rather than the geometric parameters of each unit

cell. These parameters include the number of Voronoi seeds and the size of pores (Fantini

et al., 2016). Such randomized structures often appear in nature. At the same time, beam-
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based cellular structures are not common in nature, and an advanced surface modeling

approach is usually required to mimic bio-inspired geometry appropriately. It is possible,

for example, to apply randomized geometric modeling approaches based on TPMS to mimic

bone tissue (Shi et al., 2018).

Some of the existing tools support implicit modeling to a certain extent. Implicit mod-

eling enables the definition of geometry based on implicit mathematical functions. Implicit

functions extend the design freedom of a geometric modeling tool by, for example, mini-

mizing the user input and are the only practical way to model TPMS structures. In partic-

ular, topology optimization supported by nTopology is characterized as implicit modeling.

Topology optimization adjusts the geometric parameters of each unit cell according to a

field function. This field function is commonly obtained through a CAE simulation. Topol-

ogy optimization is currently limited by optimizing the thickness of a cellular structure

which in some cases is not a sole parameter of a topology. The truncated cube topology,

for example, requires the truncation parameter to be fully defined.

Moreover, the design freedom is limited by the results of the optimization process.

Other adjustments must be manually introduced in the resulting solid model, often to each

relevant unit cell. This thesis mainly focuses on geometric modeling methods not based on

optimization.

MATLAB (The MathWorks, Inc., 2008) is another powerful tool that finds applications

in mathematical and geometric simulations. Moreover, MATLAB is extendable by add-

ons. For example, MSLattice (Al-Ketan and Abu Al-Rub, 2021) allows the modeling of

various TPMS-based cellular structures. It also supports the modeling of a transition

between two different topologies. Another example is FLatt Pack (Maskery et al., 2022)

which allows their modeling of simple TPMS-based homogeneous cellular structures and

even their export to the STL file format. Both tools support modeling conformal cellular
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structures in cylindrical and spherical coordinates. FLatt Pack supports a homogeneous

cellular structure infill within an imported STL file. Both tools do not support the STEP

file format export as of now. Both tools are also limited to the modeling of TPMS-based

cellular structures only. However, FLatt Pack considers the body-centered cubic (BCC)

topology as an extreme case of a gyroid topology. FLatt Pack and MSLattice define the

TPMS topologies by their corresponding implicit functions. FLatt Pack voxelizes the unit

cell design space according to that implicit function and can approximate the triangular

mesh for export to STL.

2.4.4 Comparison of tools for cellular structure modeling

This subsection has made a comparison to provide a clearer understanding of the capa-

bilities and features of various tools for cellular structure modeling. The comparison en-

compasses custom topology support, linear and non-linear gradient application, parametric

design capabilities, customizable heterogeneity, and platform compatibility.

Autodesk Netfabb and Sulis Lattice offer limited custom topology support and linear

gradient application but lack non-linear gradient and parametric design capabilities. They

also do not support customizable heterogeneity and are limited to the Windows platform.

Rhinoceros 3D and Grasshopper provide more comprehensive support for custom topolo-

gies, linear and non-linear gradients, and parametric design. However, the customizable

heterogeneity in these tools is limited. They are compatible with both Windows and ma-

cOS platforms. Intralattice and Crystallon, plugins for Grasshopper, offer similar features

with varying levels of heterogeneity support.

Dendro, another plugin for Grasshopper 3D, does not support custom topologies but

allows for linear gradient application, parametric design, and limited customizable hetero-

geneity. It is also compatible with both Windows and macOS platforms.
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nTopology, a more recent tool, offers robust support for custom topologies, linear and

non-linear gradients, parametric design, and customizable heterogeneity, making it a strong

option for advanced cellular structure modeling. However, it is currently limited to the

Windows platform. Furthermore, heterogeneity of parameters other than lattice thickness

remains unachieved.

Table 2.1 compares the features and capabilities of various tools for modeling cellular

structures. It highlights the differences in custom topology support, linear and non-linear

gradient application, parametric design capabilities, customizable heterogeneity, and plat-

form compatibility. In conclusion, the choice of a tool for modeling cellular structures

depends on the specific requirements of a project. While some tools offer more features

and capabilities than others, it is essential to evaluate the suitability of a tool based on the

particular demands of the design and manufacturing process.

Table 2.1 Comparison of features and capabilities of cellular structure mod-
eling tools

Tool Custom
topol-
ogy

Linear
gradient

Non-
linear
gradient

Parame-
tric de-
sign

Hetero-
geneity

Autodesk Netfabb Limited Yes No No No
Sulis Lattice Limited Yes No No No
Rhinoceros 3D Yes Yes Yes Yes Limited
Intralattice Yes Yes No Yes Limited
Crystallon Yes Yes No Yes Limited
Dendro No Yes No Yes Limited
nTopology Yes Yes Yes Yes Limited
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2.4.5 Graphical user interface of software packages for the geometric

modeling of cellular structures

Heterogeneous cellular structures require a substantial number of parameters to be defined.

Tools such as Autodesk Netfabb provide a graphical user interface (GUI) similar to a con-

ventional feature-based CAD package, which increases interactivity but negatively impacts

the design intent when designing complex geometry (Mathur et al., 2020). On the other

hand, the previously mentioned plugins for Rhinoceros 3D support the geometric model-

ing of cellular structures through Grasshopper 3D, which introduces a visual programming

language (VPL) to describe the geometry as a dataflow diagram. The GUI of nTopology

allows the user to design cellular structures with subsequential functional blocks, which

is another VPL form. While it was found that a GUI based on a VPL is beneficial for

beginners, more geometrically complex structures can become extremely challenging to be

designed, thus disrupting the intent in the case of an advanced design (Saito et al., 2017).

2.5 Research objectives

The primary aim of this thesis is to explore the use of F-rep for the geometric modeling

of heterogeneous cellular structures, addressing the existing research gap in this area. The

motivation for using F-rep lies in its ability to seamlessly represent complex geometry and

topology, making it a promising candidate for modeling heterogeneous cellular structures

that require variation in geometric parameters other than thickness. Additionally, there

is a lack of open-source solutions for modeling these complex structures, which further

motivates the development of novel techniques.

This chapter provided a comprehensive literature review on existing geometric modeling

techniques, focusing on their application to cellular structures. It also identified the research
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gap in modeling heterogeneous cellular structures with varied geometric parameters beyond

thickness. The properties and advantages of F-rep as a geometric modeling technique have

been investigated. Based on the performed review, the following research objectives have

been identified to achieve the set goal:

1. Develop a deep understanding of the geometric, topological, and mechanical charac-

teristics of heterogeneous cellular structures, which will inform the development of

F-rep-based modeling techniques and enable the generation of high-quality models.

2. Propose an innovative F-rep-based modeling framework for designing and represent-

ing heterogeneous cellular structures, addressing the challenges and limitations of

existing techniques while leveraging the strengths of F-rep and supporting the vari-

ety of diverse geometric parameters.

3. Develop efficient algorithms and open-source software tools that support the pro-

posed F-rep-based modeling framework, considering computational efficiency, mem-

ory consumption, scalability, and interoperability with other modeling techniques and

engineering tools.

4. Evaluate the performance of the proposed F-rep-based modeling framework in terms

of computational efficiency and adaptability through a series of case studies involving

the design and analysis of heterogeneous cellular structures with varied geometric

parameters.

5. Generate high-quality meshes suitable for FEA and CFD simulations from the F-rep

models of heterogeneous cellular structures.

6. Provide guidelines and best practices for using F-rep in the design and analysis of
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heterogeneous cellular structures with diverse geometric parameters based on the

insights gained from the case studies and the developed framework.
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Chapter 3

Proposed geometric modeling

framework

All hope abandon, ye who enter in.

Dante Alighieri (1265 – 1321), Inferno

In this chapter, a novel geometric modeling framework will be introduced to suggest an

architecture that is to address the research gap identified in Chapter 2.

As described in Section 2.1.4, F-rep modeling methods require real-valued mathematical

functions to describe the geometry of a solid body. Such a definition of geometry provides

significant design freedom since any shape can be defined by a mathematical function or

interpolating one (Savchenko et al., 1995; Letov et al., 2021). However, utilizing such design

freedom can prove challenging because defining the functions is difficult and tedious for an

engineering designer. This challenge is usually solved by utilizing simpler interpolations

for the functions that define the geometry (Savchenko et al., 1995; Yam et al., 2006). Such

approximations, however, result in a solid model that is not of the original design. An

approximated model often implies a geometry that does not reach all the goals set for the
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product before the conceptual design process (Hsu and Liu, 2000; Letov et al., 2021).

In this research, instead of defining a complex set of functions that define the geometry,

the focus was placed on providing tools to define these functions more straightforwardly.

The proposed method, referred to as lattice-function representation (LF-rep), implements

a single-function approach with the function depending on parameters necessary for mod-

eling a heterogeneous cellular structure. Moreover, parameters themselves are proposed to

be controlled by functions. First, such an approach supports design freedom by allowing

the variation of lattice parameters such as the beam or node diameter, surface thickness,

etc. Secondly, this approach can potentially allow the modeling of hierarchical cellular

structures since lattice-defining functions can be nested inside a higher-tier function. This

proposed approach expands the conventional F-rep approach to be better suited for mod-

eling heterogeneous cellular structures. Instead of a single function F (X) that defines the

solid model, it is proposed to split this function into two: one function that defines the

shape of a unit cell and another one that defines the geometric parameters of that topology.

Thus, this special case of the conventional F-rep model defined by Equation 2.2 is defined

in this work as

F (X) = (P ◦ T )(X) ≥ 0, (3.1)

where T defines the topology of the cellular structure, and P defines the parameters of

the topology. Figure 3.1 illustrates the heterogeneous cellular structure mapping process.

Note that the order of the composition in Equation 3.1 matters since the parameters are

different for different topologies.

This approach allows the modeling of highly complex solids. In this research, the
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Figure 3.1 The sequential mapping of the function T that defines the topol-
ogy and the function P that defines the geometric parameters of a heteroge-
neous cellular structure (Letov and Zhao, 2022)

complexity of a solid body S defined by

S := {X|F (X) ≥ 0}, (3.2)

which is considered to correlate with the genus of its bounding surface ∂S defined by

∂S := S ∩ (X− S) = {X|F (X) = 0}, (3.3)

which is essentially an oriented 2-manifold M2
g of a finite genus g. Here, S is the closure of S

and (X− S) is the closure of the complement of S. The complexity of a cellular structure is

often estimated by its genus g since it correlates with the amount of non-trivial curvatures

in the corresponding solid model (Feng et al., 2018; Letov and Zhao, 2021). For example,

a single simple cubic unit cell Ucubic of a cellular structure in Fig. 2.9 has genus g = 5 since

it is homeomorphic to M2
5 or a 5-torus T5:

Ucubic
∼= T5 = S1 × S1 × S1 × S1 × S1, (3.4)
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where S1 is a circle. The complexity of a solid torus TS – the most simplistic solid body

with a single hole – is proportional to g = 1 of the torus T ∼= M2
1 . Gyroid cellular structures

can be of different varieties with the genus of at least g = 5 (Gòźdź and Ho lyst, 1996).

The proposed framework should allow union operations between solids, such that

S =
n⋃

i=1

Si, (3.5)

where n is the total number of solids and Si is the i-th solid. In the case of trivial union, the

transition between topologies can become abrupt and the border between topologies might

not be smooth unless there is a perfect match of nodes. The topology transition in cellular

structures is a topic of interest in heterogeneous cellular structure research and has been

implemented previously in several works (Yang et al., 2015a). In particular, the transition

between two surface-based topologies invokes the most challenges (Kim and Yoo, 2020).

The rest of this section discusses the proposed LF-rep approach in detail. Section 3.1

introduces the proposed geometric description T to represent cellular topologies. Sec-

tion 3.2 describes the proposed approach for the variation of geometric parameters P in a

non-linear manner. Section 3.3 delves into the design of cellular structures with multiple

topologies, showcasing the versatility of the proposed method. In Section 3.4, stochastic

cellular structures are explored, highlighting the ability of the proposed approach to gen-

erate random and unique configurations. Lastly, Section 3.5 presents conformal cellular

structures, demonstrating how the proposed method can adapt to complex and varying

surface geometries.
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3.1 Functional definition of cellular topologies

The LF-rep framework is developed in such a way that it supports both beam-based and

surface-based topologies. The topology is proposed to be defined by its skeleton, which is

defined by the function TT. Sections 3.1.1 and 3.1.2 describe how the LF-rep approach can

be used to model beam-based and TPMS-based topologies, respectively.

3.1.1 Beam-based topologies

Since the methodology described in this work is proposed to be based on LF-rep, functions

need to be defined for the common topologies. A skeleton of a beam-based topology can

be defined by a set of lines that are defined in x, y, z ∈ [0, u], where u is the size of a unit

cell.

As an example of how a beam-based topology can be defined, consider a BCC topology

sketched in Fig. 3.2 with eight nodes in every vertex of a cube and one more node in the

center of the cube. The skeletal frame for this topology can be defined as follows:

T (X) :



x

a
=

y

b
=

z

c
,
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−a
=
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b
=

z

c
,

x

a
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y

b
=
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−c
,

x− a

−a
=

y

b
=

z − c

−c

for x ∈ [0, a], y ∈ [0, b], z ∈ [0, c], (3.6)

where a, b, and c are sides of a cuboid unit cell. In the case of a cubic unit cell, a = b = c.

After defining the skeletal frame, a cross-section with varying parameters can be assigned

to the frame. The cross-section itself can be defined by function ∆(Xc), where Xc ⊂ R2 is

the coordinate space local to the cross-section plane. For example:
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1. A cylindrical beam can be defined by a cross-section which can be defined as

∆(xc, yc) : x2
c + y2c = R2

c , (3.7)

where xc, yc ∈ R2 are Cartesian coordinates local to the cross-section plane and Rc is

the radius of the circular cross-section.

2. A beam with a square cross-section can be defined as

∆(xc, yc) : |xc + yc|+ |xc − yc| = δ, (3.8)

where xc, yc ∈ R2 are Cartesian coordinates local to the cross-section plane and δ is

the side of the square cross-section.

3. A beam with a cross-section that has a shape of a square with rounded corners can

be defined as

∆(xc, yc) : max

(
|x| − δ

2
+ ρ, 0

)2

+ max

(
|y| − δ

2
+ ρ, 0

)2

= ρc, (3.9)

where xc, yc ∈ R2 are Cartesian coordinates local to the cross-section plane, δ is the

side of the rounded square, and ρc is its fillet radius. Note that Equation 3.9 converges

to Equation 3.7 when ρc → ρmax = δ/2 and to Equation 3.8 when ρc → ρmin = 0.

F-rep in the proposed work is proposed to allow control over these parameters, thus

allowing change of topology parameters throughout the whole structure. For example, the

diameter of beams within a cellular structure with the BCC topology can be controlled by

the function P .
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Figure 3.2 A BCC unit cell described by Equation 3.6 (Letov and Zhao,
2022)

For another example, consider a topology defined by

T (X) :




x ∈ {0, u}, z ∈ {y,−y + u},

y ∈ {0, u}, z ∈ {x,−x + u},

z ∈ {0, u}, y ∈ {x,−x + u};

x, y, z ∈ [0, u],

(3.10)

where u is the side of the cubic unit cell, describes 12 straight line segments bounded by

the cubic region x, y, z ∈ [0, u] with each segment being from one vertex to the opposite
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one within the same face of the cube. In this notation, α ∈ {β, γ} means a union of α = β

and α = γ. So, x ∈ {0, u} means x = 0 and x = u. Equation (3.10) describes the skeletal

graph of the face-centered cubic (FCC) topology, which is sketched in Fig. 3.3.

Figure 3.3 An FCC unit cell described by Equation 3.10. The thicker lines
correspond to the beams located in the visible faces of the arbitrary cube with
the side u. The edges of the arbitrary cube are represented as dotted lines.
The nodes are represented as circles (Letov and Zhao, 2023a)

This way of defining skeletal graphs is based on LF-rep, which makes it different from

original F-rep and the voxel-based method used in nTopology. LF-rep allows a more

straightforward way of defining the thickness of topology by defining a variable within
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the function (Rc for the circle ∆ in the example in Equation 3.7). Furthermore, as will be

described further, this approach allows variation of parameters other than thickness, thus

further extending the design freedom.

Various cellular topologies were defined according to the LF-rep approach. Table 3.1

lists beam-based topologies inspired by the cubic crystal system and their topology-defining

functions T . The topology-defining function T , in this case, is defined for x, y, z ∈ [0, u].

In Table 3.1, the unit cell is assumed to be cubic with the side u. The unit cells of these

topologies are shown in Fig. 3.4. The notations of the form x ∈ {a, b} that is used in this

work denote the union of two parallel lines with x = a and x = b. In other words,

x ∈ {a, b} ⇔ ¬[a, b] ∪ (a, b). (3.11)

Tables 3.2, 3.3, and 3.4 describe the diamond, rhombicuboctahedron, and truncated

cube topologies, respectively. The rhombicuboctahedron and truncated cube topologies

require an additional truncation parameter τ ∈ [0, 0.5u], which sets the size of truncation.

These topologies are illustrated in Fig. 3.5.

3.1.2 Surface-based topologies

The LF-rep approach is proposed to be applied to the topologies based on TPMS. For

TPMS-based cellular structures, the skeletal frame is equivalent to the TPMS itself de-

scribed by a mathematical equation. Since the approximations of these equations are

well-known, there is even more reason to rely on LF-rep to model TPMS-based cellular

structures. For example, a gyroid surface illustrated in Fig. 3.6 is defined by its equation

as follows:

T (X) : sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x) = 0. (3.12)
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Table 3.1 Various beam-based topologies inspired by the cubic crystal sys-
tem supported by the developed approach.

Topology Topology defining function, T Figure

Simple cubic

 x ∈ {0, u}, y ∈ {0, u},
y ∈ {0, u}, z ∈ {0, u},
x ∈= {0, u}, z ∈ {0, u}.

3.4a

BCC


x = y = z,

−x + u = y = z,

x = y = −z + u,

−x + u = y = −z + u.

3.4b

S-FCC

[
x ∈ {0, u}, z ∈ {y,−y + u},
y ∈ {0, u}, z ∈ {x,−x + u}.

3.4c

FCC S-FCC ∪

{
z ∈ {0, u},

y ∈ {x,−x + u}.
3.4d

BCCz BCC ∪

{
x ∈ {0, u},
y ∈ {0, u}.

3.4e

FCCz FCC ∪

{
x ∈ {0, u},
y ∈ {0, u}.

3.4f

S-FCCz S-FCCz ∪

{
x ∈ {0, u},
y ∈ {0, u}.

3.4g

FBCC BCC ∪ FCC. 3.4h

S-FBCC BCC ∪ S-FCC. 3.4i

S-FBCCz BCC ∪ S-FCCz. 3.4j

Unlike beam-based topologies, TPMS-based topologies do not require its cross-section

to be defined as a function ∆. Instead, only the thickness t of a solid body must be defined.

Table 3.5 covers functions T that define supported TPMS topologies. Note that T these

surfaces are approximations of their exact form Gandy and Klinowski (2000). The unit cells

of the TPMS topologies are shown in Fig. 3.7.



3 Proposed geometric modeling framework 78

Figure 3.4 Various beam-based topologies inspired by the cubic crystal sys-
tem supported by the developed approach: (a) simple cubic, (b) BCC, (c)
FCC, (d) S-FCC, (e) BCCz, (f) FCCz, (g) S-FCCz, (h) FBCC, (i) S-FBCC,
and (j) S-FBCCz (Letov and Zhao, 2022)

The LF-rep approach allows the proposed framework not to be limited to beam-based

topologies since the original F-rep allows the modeling of everything that can be defined

with functions that define the geometry.

3.2 Functional variation of geometric parameters

As mentioned in Chapter 2, most existing approaches for modeling heterogeneous cellular

structures permit control of the cellular structure thickness. This control is primarily
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Table 3.2 The diamond topology supported by the developed approach.

Topology Topology defining function, T Figure

Diamond

for z ∈ [0, 0.25u]:
−x + u = y = z,

x− 0.5u = −y + 0.5u = z,

−x + 0.5u = y − 0.5u = z,

x = −y + u = z;
for z ∈ [0.25, 0.5u]:
−x + 0.75u = −y + 0.25u = z − 0.25u,

x− 0.75u = y − 0.25u = z − 0.25u,

x− 0.25u = y − 0.75u = z − 0.25u,

−x + 0.25u = −y + 0.75u = z − 0.25u;
for z ∈ [0.5, 0.75u]:
−x + 0.5u = y = z − 0.5u,

x = −y + 0.5u = z − 0.5u,

−x + u = y − 0.25u = z − 0.5u,

x− 0.5u = −y + u = z − 0.5u;
for z ∈ [0.75, u]:
−x + 0.25u = −y + 0.25u = z − 0.75y,

x− 0.25u = y − 0.25u = z − 0.75u,

−x + 0.75u = −y + 0.75u = z − 0.75u,

x− 0.75u = y − 0.75u = z − 0.75u.

3.5a

gradient-like, with the linear distribution of the thickness in a specified direction. The

only exception among the reviewed methods is topology optimization. While topology

optimization allows the generation of geometrically highly complex structures (Liu et al.,

2021a), it has limited control from the user. Hence, it was decided to develop a less

implicit modeling method not based on topology optimization but on the proposed LF-rep

approach.

The LF-rep approach allows variation of various geometric parameters in different di-
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Table 3.3 Rhombicuboctahedron topology supported by the developed
approach.

Topology Topology defining function, T Figure

Rhombicuboctahedron



x ∈ {τ, u− τ},


−y + τ = z,

−y − u + τ = z,

y = z − u + τ,

−y + u = z − u + τ ;

y ∈ {τ, u− τ},


x = z − u + τ,

−x + u = z − u + τ,

−x + τ = z,

x− u + τ = z;

z ∈ {τ, u− τ},


−x + τ = y,

x− u + τ = y,

x = y − u + τ,

x− u + τ = −y + u;

x ∈ {τ, u− τ}, y ∈ {0, u}, z ∈ [τ, u− τ ];

x ∈ {0, u}, y ∈ {τ, u− y}, z ∈ [τ, u− τ ];

x ∈ {τ, u− τ}, z ∈ {0, u}, y ∈ [τ, u− τ ];

x ∈ {0, u}, z ∈ {τ, u− y}, y ∈ [τ, u− τ ];

y ∈ {τ, u− τ}, z ∈ {0, u}, x ∈ [τ, u− τ ];

y ∈ {0, u}, z ∈ {τ, u− y}, x ∈ [τ, u− τ ];

z ∈ {τ, u− τ},


−x + τ = y,

x− u + τ = y,

x = y − u + τ,

x− u + τ = −y + u.

3.5b

rections and is not limited to the linear distribution of the cellular structure parameters.

This variation is enabled by introducing the function P , which controls the parameters. For

example, P (X : t(z), where t : I 7→ R+ is the thickness of the cellular structure, and I is a

unit interval [0, 1] ⊂ R. The LF-rep approach allows setting thickness t as a distribution

defined by any mathematical function. Here, the thickness can be either the beam or the
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Table 3.4 Truncated cube topology supported by the developed approach.

Topology Topology defining function, T Figure

Truncated
cube



x ∈ {0, u},


−y + t = z,

y − u + t = z,

y = z − u + t,

−y + u = z − u + t;

y ∈ {0, u},


−x + t = z,

x− u + t = z,

x = z − u + t,

x− u + t = −z + u;

z ∈ {0, u},


−x + t = y,

x− u + t = y,

x = y − u + t,

−x + u = y − u + t;

x ∈ [t, u− t],

[
x ∈ {0, u},
z ∈ {0, u};

y ∈ [t, u− t],

[
x ∈ {0, u},
z ∈ {0, u};

z ∈ [t, u− t],

[
x ∈ {0, u},
y ∈ {0, u}.

3.5c

surface thickness, depending on function T , which describes the topology. Several use cases

of varying P (X) : t(z) are presented in Chapter 4.

Apart from the cellular structure thickness, other geometric parameters can be regu-

lated using the LF-rep method. Examples of these parameters encompass the radius ρc of

the fillet of the square beam with rounded corners as described in Equation 3.9. Another

example is the truncation parameter τ in the rhombicuboctahedron and the truncated

cube topologies. Both topologies converge to simple cubic with τmin = 0 (0%). The
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Figure 3.5 Additional beam-based topologies supported by the devel-
oped approach: (a) diamond, (b) rhombicuboctahedron, and (c) truncated
cube (Letov and Zhao, 2022)

Table 3.5 Various TPMS-based topologies supported by the developed
approach.

Topology Topology defining function, T Figure

Gyroid sinx cos y + sin y cos z + sin z cosx = 0 3.7a

Schwarz P
surface

cosx + cos y + cos z = 0 3.7b

Schwarz D
surface

cosx cos y cos z − sinx sin y sin z = 0 3.7c

rhombicuboctahedron topology converges to the octahedron topology with τmax = u/2

(100%). The truncated cube topology with converges to the cuboctahedron topology with

τmax = u/2 (100%). The truncation is an example of a parameter that is not commonly

controlled in existing modeling tools such as Autodesk Netfabb and nTopology. Support

for such control increases modeling capabilities and allows the design of cellular structures

with desirable topology transition.

The LF-rep method has the potential to bolster current cellular structure modeling

tools, introducing an additional F-rep tool to alter geometric parameters, extending be-

yond just the cellular structure thickness.

As an example, consider a heterogeneous cellular structure based on the Schwarz P
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Figure 3.6 A gyroid surface described by Equation 3.12 (Letov and Zhao,
2022)

surface defined according to the proposed method. Let the thickness to linearly change

from 0.1 mm to 7.0 mm along the z-axis. The Schwarz P surface itself is defined by its

skeletal graph

T (X) : cos(x) + cos(y) + cos(z) = 0, (3.13)

which is a TPMS with zero thickness t (Michielsen and Stavenga, 2008).

F-rep can be overly complicated when used in engineering design as a modeling tool,

as it requires expertise in both design and mathematics. To simplify and adjust F-rep to
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Figure 3.7 Various TPMS-based topologies supported by the developed ap-
proach: (a) gyroid, (b) Schwarz P surface, and (c) Schwarz D surface (Letov
and Zhao, 2022)

the AM needs, the solid model, which is based on a skeletal graph, can be obtained by an

additional function specifically developed for this topology. For example, for the Schwarz

P surface topology, this additional function appears as a single function with multiple

parameters in it:

Schwarz lattice(size(U), Nx, Ny, Nz, P (X)), (3.14)

where size(U) = 10 mm is the size of the unit cell, Nx, Ny, and Nz are the numbers of

unit cells in x, y, and z directions, respectively, and P (X) is the function that controls the

thickness of the TPMS-based structure, thus enabling setting t > 0 and construction of

solids based on surfaces. P (X) in this case, corresponds to

P (X) : t(z) = 6.9z + 0.1, (3.15)

where t is the thickness of the cellular structure, and z ∈ [0, 1] is the variable corresponding

to the z-axis. Note that since z ∈ [0, 1], it has to be mapped to the actual coordinate

za ∈ [1, Nz] with za ∈ N+. This distribution is illustrated in Fig. 3.8.

To exploit the F-rep representation in a practical context, individuals would require a

blend of geometric understanding, familiarity with the mathematical principles underly-

ing functional representation, and proficiency in computational design tools (Pasko et al.,
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1995). The major challenge is the interplay of mathematical complexity and design intent;

one has to discern the mathematical constructs and how they influence the final design

output (Li et al., 2020c). However, with advances in computational methods and software

interfaces, there is potential for automation (Munaux, 2004). Reverse engineering, in this

context, would involve interpreting an existing design in terms of its functional representa-

tion, which is a non-trivial task (Pasko et al., 2001). The primary challenges would stem

from the inherent complexity of translating intricate geometric features into concise func-

tional descriptions while ensuring the uniqueness of representation (Kou and Tan, 2007).

Additionally, tackling ambiguities in design details, and ensuring that the function-derived

design adheres to the original intent, poses a significant challenge (Pasko et al., 1995).

For a more detailed implementation of the approach, please refer to Section 4.2.

Figure 3.8 (a) A side view on a single column of a heterogeneous cellular
structure with Schwarz P topology with linearly varying thickness in the z-
direction, and (b) the linear function P that corresponds to the thickness of
the TPMS-based structure vs. the z coordinate (Letov and Zhao, 2022)

3.3 Cellular structures with multiple topologies

A cellular structure with multiple homogeneous regions is an example of a heterogeneous

cellular structure. Different topologies have different mechanical properties in different
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directions (Li et al., 2020a). Assigning various topologies to different regions of the same

structure ensures the variation of mechanical properties. This effect is often utilized in

design for additive manufacturing (DFAM) (Liu et al., 2020b). For example, topology

optimization can often identify the optimal topology for each cellular structure unit cell

depending on the loading conditions (Hu et al., 2021; Wei et al., 2022). Figure 3.9 illustrates

an example of a cellular structure with topologies selected based on a topology optimization

algorithm.

Figure 3.9 An example of a cellular structure with multiple topologies that
are inspired by topology optimization (Liu et al., 2020b)

The topic of topology transition in cellular structures is not a new one (Leonardi et al.,

2019). Geometric modeling of transition between areas with different topologies within

the same cellular structure is particularly interesting in research on this topic. A smooth
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transition between topologies that are arbitrarily oriented between each other finds its

application in, for example, the design of bone implants (Lu et al., 2020). Trabecular

bone has multiple porous microstructures oriented depending on the direction in which

the load is commonly applied to the bone. The bone regions subject to the same type of

load possess similar mechanical properties, which are achieved by a seemingly randomized

natural cellular structure with arbitrarily oriented beams.

The rest of this section describes the proposed LF-rep geometric modeling strategies to

support the generation of cellular structures with multiple beam-based and surface-based

topologies in Sections 3.3.1 and 3.3.2, respectively.

3.3.1 Beam-based cellular structures with multiple topologies

In beam-based topologies, the connectivity issue arises when there is no well-defined phys-

ical connection between the beams of two neighboring topologies. The connectivity issue

affects the quality of the solid model of the cellular structure and its manufacturability.

The LF-rep approach focuses on addressing these challenges, providing a robust framework

for beam-based cellular structures. Figure 3.10 sketches a scheme of a cellular structure

with multiple topologies with connectivity issues.

The crystallography cubic crystal system inspires a substantial number of beam-based

topologies due to their ability to reinforce the structure in specific directions (Maskery

et al., 2017). These topologies include simple cubic, body-centered cubic (BCC), and face-

centered cubic (FCC), as well as variations of these topologies such as self-supporting FCC

without horizontal beams (S-FCC), BCC with additional four z-direction oriented beams

(BCCz), FCC with additional four z-direction oriented beams (FCCz), S-FCCz, face- and

body-centered cubic (FBCC), S-FBCC, and S-FBCCz (Letov and Zhao, 2022). These

topologies can be combined within a cellular structure without connectivity issues, given
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Figure 3.10 A schematic of a cellular structure with multiple topologies (Liu
et al., 2020a)

the parallel translation of unit cells within it.

All the topologies inspired by the metal crystal structure listed above share the same

cubic shape of their unit cell and at least four common nodes. Thus, the connectivity of

these topologies can be efficiently achieved.

However, countless other beam-based topologies that are not inspired by crystallography

exist. Among the topologies extensively used in AM are the diamond, rhombicuboctahe-

dron, truncated cube, and truncated cuboctahedron topologies. All of these, except for

the diamond topology, can generally parallel transition from one to another without signif-

icant connectivity issues. The diamond topology is not plane symmetrical, i.e., it cannot

be obtained by mirroring a subset of that topology about a plane. This effect limits the

application of the diamond topology in cellular structures with multiple topologies (Letov

and Zhao, 2023a).

The transition of unit cells with different topologies is not limited to parallel. For

example, assigning BCC and FCC topologies oriented in different directions in different
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regions of the same cellular structure has proven mimicking of the crystal structure damage-

resisting properties (Pham et al., 2019). The connectivity issue, in this case, is often

mitigated by introducing additional beams between the unmatched nodes in the transition

plane for support (Lertthanasarn et al., 2021). However, these additional beams in the

transition region can affect the mechanical properties that arise in it, thus making the

outcome of the design process less predictable. In particular, it has been found that the

mechanical properties in homogeneous cellular structures are easily predictable by various

techniques such as the homogenization technique (Somnic and Jo, 2022). On the contrary,

the connectivity region between various topologies is greatly affected by the geometric

properties of the transition region, which is more difficult to predict if stochastic (Wang

et al., 2015).

Connectivity of beam-based topologies by the transition plane

The proposed LF-rep approach can support a special case of topology transition at certain

angles. It is proposed to define the transition between the beam-based topologies by a

transition plane. Since it is proposed to utilize a framework based on F-rep, this transition

plane ought to be defined as a function.

Consider two topologies, the skeletal graphs T1 and T2, of which are known. The

transition plane P between them is a plane of the scalar form

P(X) : at(x− x0t) + bt(y − y0t) + ct(z − z0t) = 0, (3.16)

where at, bt, and ct are the components of the normal vector −→nt = (at, bt, ct) of the transition

plane, x0t, y0t, and z0t are the coordinates of an arbitrary point on P . In this case, the

skeletal graph of the cellular structure with the two topologies that are separated by a
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transition plane P can be described as

T (X) =


{T1(X)|P < 0},

{T2(X)|P > 0},

{(T1 ∪ T2)(X)|P = 0},

(3.17)

or, in a general case,

T (X) =


{Ti(X)|Pij < 0}

{Tj(X)|Pij > 0}

{(Ti ∪ Tj)(X)|Pij = 0}

∀i, j ∈ [1, ..., N ],

(3.18)

where Pij is a transition plane between topologies Ti and Tj, N is the total number of

regions with different topologies. Note that Pij = −Pji is assumed to account for the

change of the direction of a normal vector for each corresponding transition plane.

For example, consider a cellular structure consisting of two topologies T1 and T2 oriented

as sketched in Fig. 3.11. Let T1 be a beam-based topology with a cubic unit cell with the

side u1. Let the transition plane P between them be defined as follows:

P(X) : x + z − pu1 = 0, (3.19)

where u1 is the side of the cubic unit cell with the T1 topology and p is the number of unit

cells between the origin and the transition plane along the x-axis. In this case, the normal

vector −→nt of the transition plane P forms 45◦ with the positive direction of the x-axis.

The T2 topology has a cuboid shape with the dimensions of u2, u1, and u2 in the x2, y2,

and z2 directions, respectively, where u2 = u1/
√

2. X2 = (x2, y2, z2)
⊺ is obtained by the
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Euclidean plane transformation of rotation as X2 = RX1 = RX where R is the rotation

matrix defined as

R =

√
2

2


1 0 1

0
√

2 0

−1 0 1

 . (3.20)

Note that the additional translation matrix is optional since T2 is not defined for P < 0.

Figure 3.11 A diagram of two topologies transitioning in a plane (Letov
and Zhao, 2023a)

Controllable truncation as a means to achieve topology transition

As mentioned in Section 3.2, some topologies have an optional truncation parameter re-

quired to fully define their skeletal graph T . Using the proposed LF-rep approach, it’s



3 Proposed geometric modeling framework 92

possible to utilize this feature effectively. For example, the rhombicuboctahedron and the

truncated cube can have an additional truncation parameter τ that can be defined by the

function P that defines geometric parameters within the LF-rep framework.

The strict definition of many truncated polyhedrons assumes that every edge has an

equal length. This traditional notion of truncation is prevalent in designs like truncated

polyhedrons. However, leveraging the flexibility offered by LF-rep, this work steps away

from such strict definitions. Consider a skeletal graph T of the truncated cube topology

with the unit cell size u sketched in Fig. 3.12. The skeletal graph is defined according to

the F-rep principles (Letov and Zhao, 2022) in Table 3.4. There, the first three subsystems

of equations correspond to the line segments that define the truncated faces, and the other

three subsystems of equations correspond to the edges of the cube.

The truncated cube, if defined as an Archimedean solid, assumes that τ is defined in

such a way that every edge has an equal length. Thus

u = 2τ +
√

2τ (3.21)

or

τ =
u

2 +
√

2
. (3.22)

However, the LF-rep approach broadens this definition, assuming that truncation can span

any real value in the range τ ∈ [0, u/2], or to put it plainly, between 0% and 100%.

Observe that in the two extreme cases when the value of τ takes 0 or u/2, the equation

provided in Table 3.4 that defines the truncated cube illustrated in Fig. 3.12, it converges
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Figure 3.12 A skeletal graph of the truncated cube topology with the unit
cell size u and the truncation τ (Letov and Zhao, 2023a)

to the simple cubic topology that is defined as

T (X) :


x ∈ {0, u}, y ∈ {0, u},

y ∈ {0, u}, z ∈ {0, u},

x ∈ {0, u}, z ∈ {0, u}

(3.23)

and to the cuboctahedron topology, respectively. This effect is known as the complete

quasitruncation. Equation 3.23 is defined on x, y, z ∈ [0, u].

The LF-rep methodology similarly applies to the rhombicuboctahedron topology. In

its two extreme complete quasitruncation cases, where the value of τ takes 0 or u/2, the
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rhombicuboctahedron topology converges to the simple cubic topology and the octahedron

topology, respectively.

By interpreting the truncation τ as a variable instead of a constant, LF-rep enables the

transition from one topology T1 to another T2 by defining the function P that defines the

geometric parameters. Note that the skeletal graph differs for any two truncation values

τ ∈ [0, u/2]. This effect blurs the differences between defining the geometric parameters

with the function P and defining the topology with the function T .

For a more detailed explanation of the implementation of the proposed approach and

examples of generated models of cellular structures, please refer to Section 4.3.1.

3.3.2 Surface-based cellular structures with multiple topologies

Ensuring a smooth topology transition without defects is crucial for surface-based cellular

structures with multiple topologies. Many works assume a homogenized model, neglecting

the properties of the transition region, leading to negative effects on mechanical prop-

erties (Feng et al., 2022; Ren et al., 2021). Achieving a balance between quality and

performance is challenging, often resulting in high computation times and reduced model

quality due to defects (Qureshi et al., 2021). Current topology optimization methods are

limited, as they typically only optimize lattice thickness, which may not fully capture a

topology’s complexity (Letov and Zhao, 2022). Designing multi-topology surface-based cel-

lular structures is challenging and has received limited attention in the research community.

The process requires seamless transitions between different TPMS-based topologies while

considering geometry, material properties, and performance requirements, with geometric

modeling supporting the design process.

It is proposed to generate a skeletal graph between two surface-based topologies to

create a smooth surface from the resulting points. Skeletal graphs can be useful in this
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context as they represent the underlying connectivity of the cellular structure and can guide

the interpolation process between different topologies.

For example, consider two topologies T1 and T2 shown in Fig. 3.13 separated by the gap

δ. Let x be an axis directed from T1 to T2 perpendicular to their surfaces. Let T+
1 be the

outer face of the T1 unit cell with the normal vector oriented with the x-axis, and T−
2 be

the outer face of the T2 unit cell with the normal vector oriented against the x-axis. Let

∂T+
1 and ∂T−

2 be the contour curves corresponding to the cross-section of topologies in the

planes T+
1 and T−

2 , respectively. The transition region δ between T1 and T2 is proposed to

be obtained by interpolating the missing geometry between the contour curves ∂T+
1 and

∂T−
2 , guided by the corresponding skeletal graphs of the topologies.

Figure 3.13 The transition region T1#2 in the gap δ between topologies T1

and T2

It is essential to mention that ∂T+
1 and ∂T−

2 are not necessarily closed curves. For

example, the cross-section of a face of the Schwarz P unit cell topology is a closed circular

shape. However, the proposed approach is supposed to cover cases where the unit cells

are not necessarily whole. For example, four differently oriented open curves represent a

cross-section of half of the Schwarz P surface unit cell. Therefore, T1#2 can be a union of

disconnected surfaces. It has been shown that the interpolated connection between two solid
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bodies defined with surfaces may not be trivial and can result in visual artifacts (Cohen-Or

et al., 1998). It is proposed to mitigate this effect by splitting topology faces T+
1 and T−

2

into quarters, considering that the origin is located at the centroid of the faces. Let I+, II+,

III+, and IV+ denote the quarters on the T+
1 face, or positive quarters, and I−, II−, III−,

and IV− denote the quarters on the T−
2 face, or the negative quarters. It is proposed to

connect curve sections in positive quarters to their respective sections in negative quarters.

This approach considers T1#2 a skeletal graph derived from the two neighboring graphs.

This method assumes that T1 and T2 are tessellated regularly and ∂T+
1 ∥ ∂T−

2 . Enabling

the support of irregular tessellations is proposed for future work.

For a more detailed explanation of the implementation of the proposed approach and

examples of generated models of cellular structures, please refer to Section 4.3.2.

3.4 Stochastic cellular structures

Stochastic cellular structures can be fully defined using three design parameters: connectiv-

ity, relative density, and beam thickness (Kechagias et al., 2022). A visual representation

of stochastic cellular structures with varying design parameters is shown in Fig. 3.14 to

illustrate how these parameters affect the overall structure. Connectivity is a porosity reg-

ulator and a key factor for the mechanical behavior of the structure. By controlling the

design parameters of a cellular structure, such as beam thickness or cell size, foam-like

structures with stiffness that varies throughout the part can be created (Hossain et al.,

2021). Cellular structures can be designed using stochastic approaches, like Voronoi tes-

sellation and Delaunay triangulation, to generate complex and irregular geometries (Savio

et al., 2018; Zheng et al., 2021). Voronoi diagrams allow for space partitioning into cells,

while Delaunay triangulations enable the creation of a network of interconnected nodes and
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struts. These approaches can be combined with graph representations to efficiently model

and analyze stochastic cellular structures (Zheng et al., 2021).

Figure 3.14 Voronoi cellular structures with various α which defines the
ratio between the maximal and minimal beam thicknesses (Do et al., 2021)

In this research, it is proposed to modify the original beam-based cellular structure

modeling approach and adjust it for a stochastic case, incorporating skeletal graphs to

represent the topology. As seen in Equation 3.1, defining the topology T is required in

LF-rep first. T is a skeletal graph of lines of zero thickness. T is defined for a unit cell,

and then P is applied to set its geometric properties, such as the beam thickness.

Beam-based unit cells in the original approach are defined as equations of line segments.

Stochastic cellular structures, such as the Voronoi structure, have no unit cell. Therefore, T

must define the skeletal graph of the whole structure. It is proposed to consider T as a 3D

graph structure of edges that are connected at vertices, thereby representing the skeletal

graph. Let Γ be a 3D graph consisting of n vertices, denoted as w1, ...wi, ..., wj, ..., wn, and

m edges, represented as ϵ1,2, ..., ϵi,j, ..., ϵm−1,m, where i ̸= j. Consider an arbitrary edge ϵi,j

between vertices wi = (xi, yi, zi) and wj = (xj, yj, zj), which are shown in Fig. 3.15. Then,

each edge can be defined in parametric form as

ϵi,j(α) = wi + α(wj − wi) (3.24)
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for 0 ≤ α ≤ 1, or

ϵi,j(X) :
x− xi

xj

=
y − yi
yj

=
z − zi
zj

. (3.25)

Figure 3.15 The edge ϵi,j between vertices wi and wj of a graph Γ

Consider that the edge ϵi,j(X) is nonexistent, or ϵi,j(X) = ∅, if vertices wi and wj are

not connected in Γ or i = j. In this case, T is defined for the whole cellular structure as a

union of all edges:

T (X) =
n⋃

i=1

m⋃
j=1

ϵi,j(X). (3.26)

Voronoi cellular structures are commonly used in design for AM (DFAM) when the

structure must be stochastic Do et al. (2021). The seeds of the Voronoi tessellation are

considered to be uniformly distributed within the design space X according to a specific

distribution, such as a Poisson disk sampling. This work proposes to identify the edges

of a Voronoi cellular structure by tracing the edges after applying the radial growth from

its seeds (Kim et al., 2005). In this approach, since Voronoi edges are conic, they can be
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described by a rational quadratic Bézier curve

B(α) =
ω0(1− α)2p0 + 2ω1(1− α)αp1 + ω2α

2p2
ω0(1− α)2 + 2ω1(1− α)α + ω2α2

, (3.27)

where p0, p1, and p2 are the control points, and ω0, ω1, and ω2 are their corresponding

weights. The Bézier curve converges to a straight line by fitting tangent spheres between

any three neighboring spheres with Voronoi seeds as their center. The complexity of this

algorithm is O(n) (Kim et al., 2005).

3.5 Conformal cellular structures

This subsection delves into the geometric modeling of conformal cellular structures using

the LF-rep approach. It emphasizes the importance of skeletal graphs in representing a

topology that conforms to a given surface or volume.

Geometric modeling plays a critical role in designing conformal cellular structures that

adhere to the shape of a surface. Various methods have been proposed in the literature to

support the efficient design and fabrication of such structures. However, these methods have

disadvantages and limitations, which need to be addressed to improve their applicability.

This section is divided into two to discuss different aspects of conformality. In Section

3.5.1, the proposed method for generating cellular structures that conform to the boundary

surfaces of an object is discussed. This ensures that the cellular structure precisely follows

the surface geometry of the object, allowing for better control over structural properties

and aesthetics. Subsection 3.5.2 delves into the proposed method for the generation of

cellular structures that conform to the internal volumetric boundaries of an object. This

is particularly useful for creating structures with varying material distribution or density,

which can result in more efficient use of materials and improved performance in specific
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applications. Both surface and volume conformality approaches are essential in the design

of complex and functional cellular structures.

3.5.1 Surface conformality

The proposed LF-rep method to conform a cellular structure to a surface is achieved by

transforming the design space X to another design space XΦ that is mapped to an arbitrary

surface Φ. In this context, the skeletal graph plays a crucial role in defining the topology

of the cellular structure while adhering to the surface conformality constraints.

The transformation N : X → XΦ might not be affine, and N might not be a vec-

tor between points in R3. This is because the surface’s intrinsic geometry determines

the conformal map, and the edges of a polyhedron have no geometric significance in this

context, even when the metric arises from an embedding in R3 (Crane, 2020). The skele-

tal graph representation of the cellular structure enables the preservation of the topology

while accommodating the complex geometric transformations required to achieve surface

conformality. Figure 3.16 illustrates this transformation.

In the LF-rep framework, Φ is considered to be a middle plane of the cellular structure,

and η is collinear with the normal unit vector n⃗Φ of Φ. Let h be the thickness of the

cellular structure that conforms to the surface Φ. The skeletal graph is then used to

create a cellular structure that conforms to the surface Φ, maintaining the thickness h

and the intended geometric properties, as follows. The furthest equidistant surfaces Φ+

and Φ− from the middle plane Φ will be positioned at h/2 from it in the directions of n⃗Φ

and −n⃗Φ, respectively. Constructing the equidistant surfaces Φ+ and Φ− is not always

trivial (Vyshnepolsky et al., 2022). If Φ is defined in parametric form Φ⃗(p, q), then the
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Figure 3.16 A transformation of the design space N : X = (x, y, z) →
XΦ = (ξ, ζ, η) where XΦ is Cartesian with respect to the surface Φ. The
skeletal graph of the cellular structure is used to maintain the topology while
achieving surface conformality. Φ is considered the middle surface of the cel-
lular structure that infills the volume with the thickness h.

vector n⃗Φ can be found as

n⃗Φ =

(
∂Φ⃗
∂p

(p, q)
)
×
(

∂Φ⃗
∂q

(p, q)
)

∣∣∣(∂Φ⃗
∂p

(p, q)
)
×
(

∂Φ⃗
∂q

(p, q)
)∣∣∣ . (3.28)

After finding n⃗Φ, the surfaces Φ− and Φ+ can be obtained numerically by offsetting every

point of Φ by ±hn⃗Φ/2. This numerical approach is ensured by obtaining an equation for

a line passing along n⃗Φ and solving this equation as a system of two equations with the

Euclidian distance

(x− xΦ)2 + (y − yΦ)2 + (z − zΦ)2 =

(
h

2

)2

, (3.29)

where (xΦ, yΦ, zΦ) is the offsetted point. Note that in the general case (xΦ, yΦ, zΦ) will have

two solutions for hn⃗Φ/2 and −hn⃗Φ/2. By leveraging the skeletal graph representation, it

is possible to effectively conform the cellular structure to the surface while preserving the
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structural topology and achieving surface conformality.

The proposed method for surface conformality using skeletal graphs paves the way for

future research to improve support for non-Cartesian XΦ and consider more complex con-

formal mapping scenarios. The skeletal graph representation provides a powerful and flex-

ible approach to achieving surface conformality while maintaining the intricate topological

features of the cellular structure.

3.5.2 Volume conformality

In this work, through the LF-rep approach, it is proposed to extend the functionality of

the approach by allowing X to be limited to Xf ⊂ X ⊂ R3 while employing the skeletal

graph representation to preserve the topology of the cellular structure.

Given a volume V that the cellular structure should uniformly infill, a skeletal graph

T = (WT , ET ) can be used to define the connectivity and geometric properties of the

structure, ensuring that it conforms to the intended volume. Here, WT represents the

vertices of the graph, and ET represents the edges that connect the vertices. The skeletal

graph can be mathematically described in a general form as follows:

T = (WT , ET ) =


wi ∈ R3 | i = 1, 2, . . . , nw;

ϵij = (wi, wj) | i, j = 1, 2, . . . , nw; i ̸= j

 , (3.30)

where nw is the number of vertices in the graph, and ϵij denotes an edge connecting vertices

wi and wj.

Employing a skeletal graph makes it possible to create a more stable structure with

better mechanical properties, as it ensures that the structure is more evenly loaded, reducing

the likelihood of stress concentrations and failure points. A mathematical representation
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of the cellular structure’s uniformity can be expressed as follows:

U(W ) =
∑

ϵij∈ET

1

|ET |

∣∣∣∣∂W∂ϵij
∣∣∣∣ , (3.31)

where U(W ) represents the uniformity of the cellular structure within the volume W and

∂W
∂ϵij

denotes the change in the volume due to a change in edge ϵij.

However, such an approach can result in an abrupt cut of beams in cellular structures.

To address this issue, it is proposed to introduce the net-skin method shown in Fig. 3.17

to cellular structures, which incorporates the skeletal graph representation. A net-skin is

applied to a cellular structure to mitigate the adverse effects of trimming (Aremu et al.,

2017).

Figure 3.17 (a) A trimmed cellular structure based on the skeletal graph,
(b) the cellular structure with a net-skin, and (c) the net-skin (Aremu et al.,
2017)

The net-skin method is useful for creating conformal cellular structures with complex ge-

ometries and can be used to optimize the structure’s mechanical properties. This method is

particularly useful for creating structures with non-uniform strut orientations, connectivity,

and sizes, which can significantly affect the mechanical properties of the structure (Aremu

et al., 2017).
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Chapter 4

Implementation

We are stuck with technology when what we

really want is just stuff that works.

Douglas Adams (1952 – 2001),

The Salmon of Doubt

For the implementation of the proposed LF-rep approach, it was decided to use Open

CASCADE Technology (OCCT), the most widely used and well-documented open-source

GMK (Yuan and Zhang, 2008; Banovic et al., 2018). Developing the software prototype in

the C++ programming language, which is the native programming language of OCCT, can

undoubtedly prove to be useful in the long run for geometric modeling applications, which

is confirmed by extensive use of C++ in every major existing CAD software (Li et al.,

2011; Golovanov, 2014). However, for prototyping purposes, it was decided to develop a

minimal viable product (MVP) that would be faster to create and easier to iterate for

further improvements (Ries, 2011; Lenarduzzi and Taibi, 2016). For this purpose, it was

decided to build the software prototype based on CadQuery (Urbanczyk et al., 2021a) as

the modeling tool and CQ-editor (Urbanczyk et al., 2021b) as the GUI shell, both licensed
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under a permissive license and written in Python. CadQuery introduces parametrization

methods built on top of OCCT, which are critical for the proposed work. Moreover, OCCT

and CadQuery are cross-platform, meaning that the developed prototype has no limitation

in terms of an OS that it can be used on.

The development was focused only on the implementation of the methodology itself.

The LF-rep methodology is implemented in a Python library, which describes all the ge-

ometry and constraints, and works together with CadQuery. The GUI is inherited from

CQ-editor with an ability to import the developed library from within the CQ-editor inline

code editor. The GUI also includes the 3D CAD viewer capable of rendering the resulting

solid models with the OCCT GMK.

It is proposed that to generate CAD files via the LF-rep methodology, users need to

provide several input parameters that define the desired cellular structure characteristics.

These parameters are critical for customizing the generated cellular structures to meet the

specific design requirements and constraints. The user input parameters include:

1. Unit cell type: Users need to select the desired unit cell type for the cellular

structure, such as FCC, BCC, or gyroid. This selection will determine the overall

topology and mechanical properties of the generated structure.

2. Unit cell size: Users must define the size of the unit cell, which will determine

the dimensions of the entire cellular structure. This parameter can be adjusted to

control the density and porosity of the generated structure. Note that a unit cell is

not necessarily cubic.

3. Domain dimensions: Users need to provide the dimensions of the design domain,

which will define the overall size of the cellular structure. This parameter is essential

to ensure that the generated structure fits within the desired space or conforms to
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specific design constraints.

4. Geometric parameter types: Users must choose the types of geometric parameters

they wish to vary in the cellular structure. These parameters can include thickness,

truncation, beam cross-section, and others. By varying these parameters, users can

customize the cellular structure to achieve specific design goals or meet specific per-

formance requirements.

5. Parameter values: Users need to provide the values for the chosen geometric pa-

rameters. These values can be constant or controlled by functions. For example, users

can specify a constant thickness for the entire cellular structure or define a function

that varies the thickness across the structure based on spatial coordinates or other

input parameters. By controlling the values of these geometric parameters, users can

fine-tune the performance and behavior of the cellular structure to meet their design

objectives.

After providing these input parameters, the LF-rep methodology will generate the CAD

files for the cellular structure, which can then be visualized and further processed.

This chapter delves into the practical application of the proposed geometric modeling

methods discussed in Chapter 3. This chapter begins with Section 4.1, which introduces

the functional definition of cellular topologies, covering both beam-based and surface-based

topologies. Section 4.2 focuses on the implementation of the functional variation of geo-

metric parameters, detailing how these parameters can be varied to create complex cellular

structures. Section 4.3 discusses the implementation of the proposed approach to model

cellular structures with multiple topologies. Section 4.4 explores the implementation of the

proposed approach to model stochastic cellular structures and their application to surface-

based cellular structures with multiple topologies. Conformal cellular structures are ad-
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dressed in Section 4.5, which elaborates on both surface and volume conformality. Section

4.6 introduces LatticeQuery, a computational tool developed to support the proposed geo-

metric modeling methods, including its architecture and usage. Section 4.7 evaluates the

computational performance of the proposed methods, providing insights into the efficiency

and effectiveness of the implementation. Finally, Section 4.8 provides a summary of this

chapter.

4.1 Functional definition of cellular topologies

The implementation’s first step is defining skeletal graphs of topologies. The implemen-

tation approaches differ between the beam-based and TPMS-based topologies. However,

in both cases, a function T that defines the topology is required to be determined. The

theoretical concepts implemented in this section have been introduced in Section 3.1.

4.1.1 Beam-based topologies

For the beam-based topologies, the topologies are defined by the positions of nodes and

the line segments between them accordingly to each specific topology. The lines and nodes

allow immediate obtaining of the function T as a union of equations for multiple straight

lines.

Figure 3.4 illustrates beam-based topologies inspired by the cubic crystal system in

crystallography that the developed software prototype can model, which includes: simple

cubic (Fig. 3.4a), BCC (Fig. 3.4b), and FCC (Fig. 3.4c). Several varieties of these topologies

are supported as well, such as self-supporting FCC without horizontal beams (S-FCC;

Fig. 3.4d), BCC with additional four z-direction oriented beams (BCCz; Fig. 3.4e), FCC

with additional four z-direction oriented beams (FCCz; Fig. 3.4e), S-FCCz (Fig. 3.4f), face-
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and body-centered cubic (FBCC; Fig. 3.4h), S-FBCC (Fig. 3.4i), and S-FBCCz (Fig. 3.4j).

All topologies shown in Fig. 3.4 have the cell size u = 10mm and have a 1mm beam

diameter and 1.1mm node diameter.

Figure 3.5 illustrates other supported beam-based topologies such as diamond (Fig. 3.5a),

rhombicuboctahedron (Fig. 3.5b), and truncated cube (Fig. 3.5c). All topologies shown in

Fig. 3.5 have the cell size u = 10 mm and have 1.0 mm beam diameter and 1.6 mm node di-

ameter. The truncation τ for the rhombicuboctahedron and the truncated cube topologies

in Fig. 3.5 is 40%.

The beam-based topologies are common in design for AM (Panesar et al., 2018), but the

process of their definition is based on F-rep in this work. These topologies were defined in

the software prototype while following the object-oriented programming (OOP) principles

which are crucial for any CAD (Stroustrup, 1988; Warman, 1990). In particular, certain

features are repeated across topologies, such as, for example, vertical z-oriented beams in

simple cubic and BCCz topologies. These features were made into separate classes reused

in other topologies. In the proposed work, OOP enables simple for the end-user modular

definition of topologies and allows the end-user to define custom topologies. As a result,

the number of topologies possible to be modeled is not limited by the ones illustrated in

Fig. 3.4.

The geometric modeling of beam-based topologies is implemented as follows. A shape

that defines the beam cross-section is defined. For example, in Fig. 3.4 and Fig. 3.5, the

shape of the cross-section is set to be a circle. In the case of the beam-based topologies,

the skeletal graph is generated as a wireframe made of the instances of the TopoDS_Wire

class from OCCT. The wires are then subject to the sweep operation, which is described

by the BRepPrimAPI_MakeSweep class in OCCT, which generates a solid model based on

the wireframe, cross-section, and thickness, and is declared as shown in Listing. 1.
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1 class BRepPrimAPI_MakeSweep : public BRepBuilderAPI_MakeShape

2 {

3 public:

4 DEFINE_STANDARD_ALLOC

5 //! Returns the TopoDS Shape of the bottom of the sweep.

6 Standard_EXPORT virtual TopoDS_Shape FirstShape() = 0;

7 //! Returns the TopoDS Shape of the top of the sweep.

8 Standard_EXPORT virtual TopoDS_Shape LastShape() = 0;

9 protected:

10 private:

11 };

Listing 1: The sweep operation class declared in OCCT that is used to implement wireframe
modeling

Special attention was dedicated to the ability to model the nodes of the beam-based

topologies. Nodes are critical components that allow a smooth transition between each

unit cell and enable better manufacturability of such cellular structures.

4.1.2 Surface-based topologies

For the TPMS-based topologies, array programming with the NumPy library is used (Har-

ris et al., 2020). In particular, NumPy allows the creation of linear spaces x, y, and z and

uses them as variables for any function. Moreover, NumPy shows extremely high perfor-

mance when dealing with large arrays of periodic data, which is natural in the geometric

modeling of cellular structures since they are arrays themselves. Thus, NumPy opens the

possibility of implementing subdivision surfaces to model TPMS structures. To achieve the

effect of subdivision surfaces, several sample points are taken from each octant of a unit

cell of a TPMS topology based on an implicit function that defines it. It has been found

that 18 points per octant (144 points per unit cell) are sufficient to accurately represent the

TPMS topologies supported by this approach. These points are used for modeling NURBS
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and surfaces of the skeletal graph based on them. A modeling optimization process was

designed to model only an octant of a unit cell and translate it seven times afterward to

obtain an entire TPMS unit cell. This optimization is seen as visible boundaries between

each octant of the unit cell in Fig. 3.7. The mirroring results are then united and con-

sidered a single solid model by Open CASCADE, even though a boundary remains. The

definition of an octant rather than an entire unit cell is solely an optimization technique

that works behind the scene of the application. Such an optimization technique decreases

the number of subdivision iterations and thus mitigates a key disadvantage of subdivision

surfaces mentioned in Section 2.1.1. Afterward, the resulting surfaces need to be con-

verted into solid objects. The solidification is made possible by the implementation of the

BRepOffsetAPI_MakeFilling class from OCCT, which allows the generation of a solid

object by offset from the NURBS surface and which is shown in Listing 2. This offset is

one-directional in this class. Thus, to generate a surface-based solid object with a thickness

t, two solid models are generated from a single surface: one with the t/2 offset and another

with the −t/2 offset. This approach ensures that the surface is in the middle of the desired

solid model.

Figure 3.7a, Fig. 3.7b, and Fig. 3.7c illustrate the gyroid, the Schwarz ‘primitive’ (P)

surface, and the Schwarz ‘diamond’ (D) surface topologies, respectively, modeled with the

LF-rep approach. Table 3.5 covers the topology defining functions T for these topologies.

The illustrated unit cells have the size u = 20 mm and the thickness t = 20 mm. Note

that visible boundaries exist between each TPMS-based unit cell octant. This effect ap-

pears due to the object-oriented programming (OOP) optimization mentioned above. This

optimization technique models only one octant and utilizes it to build the rest of the unit

cell.
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1 class BRepOffsetAPI_MakeFilling : public BRepBuilderAPI_MakeShape

2 {

3 public:

4 DEFINE_STANDARD_ALLOC

5 Standard_EXPORT BRepOffsetAPI_MakeFilling(const Standard_Integer Degree =

3, const Standard_Integer NbPtsOnCur = 15, const Standard_Integer NbIter

= 2, const Standard_Boolean Anisotropie = Standard_False, const

Standard_Real Tol2d = 0.00001, const Standard_Real Tol3d = 0.0001, const

Standard_Real TolAng = 0.01, const Standard_Real TolCurv = 0.1, const

Standard_Integer MaxDeg = 8, const Standard_Integer MaxSegments = 9);

↪→

↪→

↪→

↪→

↪→

6 /*

7 The class includes more tolerance constants and data storage methods that

are available in the OCCT source code.↪→

8 */

9 protected:

10 private:

11 BRepFill_Filling myFilling;

12 };

Listing 2: The surface offset operation class declared in OCCT that is used to implement
surface-based cellular structures

4.2 Functional variation of geometric parameters

The next step of the implementation is to transform the obtained skeletal graph into a

solid body by adding thickness. The beam-based topologies are solidified by defining a

cross-section of the beam and its further application to each line segment that forms the

beam. The TPMS-based topologies are solidified by utilizing the ability of OCCT to model

solid bodies by B-rep offset. Considering that the thickness of a TPMS-based unit cell of

a cellular structure is set to be t, a t/2 offset in both normal directions must be applied to

the NURBS surface that forms the skeletal graph of the topology.

As for the implementation of the variation of geometric parameters of a cellular struc-

ture, linear spaces generated by NumPy are used as an input to any arbitrary function that
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defines the distribution of the parameters.

As an example of the implementation, consider a heterogeneous cellular structure based

on the Schwarz P that is described by Equation 3.14 and with the thickness distribution

changing linearly and described by Equation 3.15. Let the unit cell size be set to 20 mm,

and the lattice size to 10× 10× 10. The resulting solid model is a heterogeneous Schwarz

P cellular structure with varying thicknesses, illustrated in Fig. 4.1.

P (X) is not limited to being linear as in Equation 3.15. For example, consider a BCC

cellular structure with the size of Nx = 20, Ny = 6, and Nz = 6 with the beam diameter

controlled by the parabolic function:

P (X) : D(x) = −4Dmax(x− 0.5)2 + Dmax + Dmin, (4.1)

where D is the diameter of a beam of the BCC cellular structure, and Dmin and Dmax

are the cellular structure’s minimal and maximal diameters, respectively. This function

was chosen as an example since it is symmetrical around x = 0.5. Dmin = 1 mm and

Dmax = 6 mm were selected for this example. The resulting BCC structure is illustrated in

Fig. 4.2. The cellular structure’s beam diameter varies along the z-axis, which follows the

parabolic function in Equation 4.1. Observe that the node diameter varies since it is also

a parameter a function can control, and the process is virtually the same. In this example,

the node diameter was chosen to be 10% larger than the beam diameter.

Non-linear variation of geometric parameters of cellular structures is not present in

other existing tools, such as Autodesk Netfabb, which are limited to a linear change of

parameters.

Figure 4.3 provides one more visual comparison between the parameter-defining function

P and the resulting solid model. In this example, the thickness of the TPMS-based cellular
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Figure 4.1 (a) An isometric view on a heterogeneous cellular structure with
Schwarz P topology with linearly varying thickness generated with the pro-
posed approach, (b) a side view on its single column in the z-direction, and
(c) the linear function P that corresponds to the thickness of the TPMS-based
structure vs. the z coordinate (Letov and Zhao, 2022)

structure is controlled by the sine function:

P (X) : t(z) = 3 sin(6πx) + 4, (4.2)
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Figure 4.2 (a) An isometric view on a heterogeneous cellular structure with
BCC topology with non-linearly varying thickness generated with the proposed
approach, (b) a side view on its single column in the x-direction, and (c) the
parabolic function P that corresponds to the thickness of the TPMS-based
structure vs. the x coordinate (Letov and Zhao, 2022)

so that the thickness varies in the range t ∈ [1.0, 7.0]. The size of the cellular structure is

Nx = 10, Ny = 10, and Nz = 20.

A single cellular structure can have several geometric parameters varying in different

directions. Consider the heterogeneous cellular structure illustrated in Fig. 4.4, which

is modeled with the developed software prototype. This cellular structure has an FCC

topology and has its beam size t decreasing along the y-axis linearly from 2.0 mm to

0.5 mm. However, the shape of the cross-section of the beam changes along the z-axis,

which is uncommon in existing cellular modeling tools. In this case, the beam cross-
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Figure 4.3 (a) An isometric view on a heterogeneous cellular structure with
Schwarz P topology with non-linearly varying thickness generated with the
proposed approach, (b) a side view on its single column in the z-direction,
and (c) the sine function P that corresponds to the thickness of the TPMS-
based structure vs. the z coordinate (Letov and Zhao, 2022)

section’s general shape is a square with the side length t and with vertices rounded with a

fillet of the radius ρc as sketched in Fig. 4.5a. For this cellular structure, ρc is set to increase
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linearly from 0.2t to 0.5t. Note that ρc = 0.5t is the extreme case in which the shape of

the cross-section converges to a circle, as sketched in Fig. 4.5b. Such a transition between

the two different beam cross-sections can be applied in, for example, AM of bone implants.

It has been shown that the area moment of inertia of a beam cross-section can be used

to indicate the mandible stiffness of the implant patient (Hansson and Ekestubbe, 2004).

Control over the beam cross-section and, by the extent, of the area moment of inertia can

enhance the AM of bone implants that feel more natural to the patient and have a lesser

chance of being rejected by the body.

Figure 4.4 A heterogeneous cellular structure with the FCC topology with
varying thickness and beam cross-section (Letov and Zhao, 2022)
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Figure 4.5 Cross-sections of a beam in shapes of (a) a square with rounded
corners and (b) a circle (Letov and Zhao, 2022)

4.3 Cellular structures with multiple topologies

This section discusses the implementation of the proposed method for the geometric mod-

eling of cellular structures with multiple topologies. The ability to transition between

different topologies within a single cellular structure enables the creation of heterogeneous

cellular structures with tailored mechanical properties, paving the way for novel and inno-

vative engineering solutions. Two main approaches for achieving topology transitions are

discussed in this section – connectivity of beam-based topologies by the transition plane

and controllable truncation – as well as the method of surface-based cellular structures with

multiple topologies. Throughout this section, detailed examples are provided to demon-

strate the versatility and potential of these approaches in various scenarios.

4.3.1 Beam-based cellular structures with multiple topologies

This subsection delves into the intricacies of beam-based cellular structures with multi-

ple topologies, highlighting the methods and techniques employed to seamlessly transition

between distinct topologies within a single cellular structure. By leveraging the transi-
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tion plane concept, the connectivity of beam-based topologies is explored. Additionally,

controllable truncation is introduced as an alternative approach to facilitate topology tran-

sitions, examining its application in cellular structures based on truncated polyhedrons.

This discussion provides valuable insights into the design and implementation of heteroge-

neous cellular structures with beam-based topologies, offering a foundation for advanced

applications in various fields.

Connectivity of beam-based topologies by the transition plane

As described in Section 3.3, it is possible to achieve the transition of topology T1 into

topology T2 by defining the transition plane P with an arbitrary position and orientation.

This also enables support for non-cubic unit cells as one of the topologies may have the

form of a cuboid.

As an example of such topology transition, consider a heterogeneous cellular structure

with a total size of 37.5× 37.5× 37.5 mm3, which consists of topologies T1 and T2. Let T1

and T2 transition in the transition plane P defined as

P(X) : x + z − 37.5 = 0, (4.3)

so that the normal vector of P forms 45◦ with the positive direction of the x-axis. Let the

topology T1 correspond to the cubic FCC with the unit cell size of u1 = 3.75 mm, and the

topology T2 correspond to the cuboid BCC with the transition plane. Figure 4.6 illustrates

the transition in detail. In this case, u2 = u1/
√

2 = 2.66 mm.

According to the framework, after the definition of the topology T , the geometric pa-

rameters P are needed to be defined. The beams of the topologies in Fig. 4.6 are set to

have the diameter d = 0.7 mm, and the node diameter is set to D = 0.75 mm.
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Figure 4.6 The transition between the FCC topology with the cubic unit
cell to the BCC topology with the cuboid unit cell along the transition plane
P. Note that the BCC topology is rotated 45◦ (Letov and Zhao, 2023a)

Controllable truncation as a means to achieve topology transition

It is possible to achieve the topology transition T by controlling other geometric parameters

P , such as the truncation τ of topologies that are based on the truncated polyhedrons. This

can be done by defining P (X) : τ(X).

Consider a 10 × 10 × 10 cellular structure with the truncated cube topology with the

unit cell size u = 10 mm as an example of such topology transition. Let the truncation τ

of the truncated cube topology linearly change from τmin = 0 (0%) to τmax = u/2 = 5 mm

(100%), i.e.

P (X) : τ(z) = z, (4.4)

where z ∈ [0, 1] is the variable corresponding to the z-axis. In this approach, z ∈ [0, 1]

is mapped to the actual coordinate za ∈ [1, Nz] with za ∈ N+. The beam diameter is set
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to 1 mm, and the node diameter is set to 1.05 mm. The resulting heterogeneous cellular

structure is illustrated in Fig. 4.7. Note that at z = 0, the topology T described in Table 3.4

converges to the simple cubic topology defined by Equation (3.23), and at z = 1 it converges

to the cuboctahedron topology. The approach allows simultaneous control over different

geometric parameters in different directions. In this example, the beam thickness is an

additional parameter that linearly increases from 0.5 mm on the left and 5.0 mm on the

right, similar to the truncation. Note that the cellular structure nodes have a diameter

larger than the diameter of the beams and is set to increase linearly from 0.55 mm to

5.5 mm.

Figure 4.7 A heterogeneous cellular structure with the topology based on a
truncated cube with the truncation parameter τ varying along the z-axis. The
topology converges to the simple cubic at the bottom, and the cuboctahedron
topology shifted to half of the unit cell size at the top. The thickness of the
beams is linearly varying along the x-axis (Letov and Zhao, 2023a)

The truncation can be one of the potential output parameters of a topology optimization

algorithm. For example, different regions of the cellular structure can be assigned a different
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truncation depending on whether the region is subject to bending-, compression-, or tension

loads (Alghamdi et al., 2020). Additionally, since the control over the truncation allows a

smooth and continuous transition between topologies, this approach can find its application

in lattice embedding (Sanders et al., 2021).

Another example of a topology that can support the truncation-based topology tran-

sition is the rhombicuboctahedron topology. Consider a 10 × 10 × 10 cellular structure

with the rhombicuboctahedron topology and unit cell size u = 10 mm. Let the truncation

τ of the rhombicuboctahedron topology linearly change similarly to the previous example

according to Equation (4.4). Similarly, the beam diameter is set to increase linearly from

left to right. The resulting heterogeneous cellular structure is illustrated in Fig. 4.8. Note

that at z = 0, the topology T described converges to the simple cubic topology defined,

and at z = 1, it converges to the octahedron topology.

4.3.2 Surface-based cellular structures with multiple topologies

The method for topology transition introduced in Section 3.3.2 aims to fill a gap δ between

surface-based structures. It is proposed to fill the gap between unit cells with topologies

T1 and T2 by a quasi topology T1#2. A unit cell with the topology T1#2 retrieves the

boundary curves from its neighboring topologies T1 and T2. Similarly to the original work,

the proposed approach models T1#2 by generating a skeletal graph in a wireframe form and

applying thickness and other geometric parameters using the function P . For example, a

wireframe surface between a gyroid and a Schwarz P topologies is sketched in Fig. 4.9.

The method described in Section 4.1.2 models TPMS structures by modeling one octant

of a unit cell and tessellating to reuse objects and classes according to the OOP method

for optimization purposes (Stroustrup, 1988). This means that the conventional approach

of modeling one octant and tessellating it would not be suitable for transitional unit cells.
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Figure 4.8 A heterogeneous cellular structure with the topology based on
a rhombicuboctahedron with the truncation parameter τ varying along the
z-axis. The topology converges to the simple cubic at the bottom and the
octahedron topology at the top. The thickness of the beams is linearly varying
along the x-axis (Letov and Zhao, 2023a)

Furthermore, as mentioned in Section 3.3.2, the boundary curves ∂T+
1 and ∂T−

2 are not

necessarily closed. Therefore, a simple loft CAD feature between ∂T+
1 and ∂T−

2 is insuffi-

cient for addressing general non-trivial cases since a loft feature must exist between closed

loops only (Park et al., 2019). Figure 4.10 illustrates the transition between the gyroid

and Schwarz P topologies simultaneously with the variation of the structure thickness in a

different direction.

4.4 Stochastic cellular structure

In this work, SciPy Virtanen et al. (2020), a Python library well-suited for numerical

operations with graphs, is utilized to implement the skeletal graphs of stochastic cellular

structures, enabling the modeling of Voronoi cellular structures Gostick (2017); Fischman
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Figure 4.9 A wireframe transition between skeletal graphs of a gyroid and
a Schwarz P topologies

et al. (2022). SciPy allows generating a defined number of Voronoi seeds and their Voronoi

cells in 3D. To model stochastic structures, users need to provide parameters such as the

number of Voronoi seeds, desired lattice thickness, and the boundary of the object to be

filled. LatticeQuery and SciPy are Python libraries and can be implemented together for

stochastic cellular structure modeling.

SciPy can compute the edges between the neighboring Voronoi cells and provide their

coordinates. This data can then be used to generate equations of line segments that can be

fed into LatticeQuery. These equations form the topology-defining function T , and then the

parameter-defining function P can be used to apply other properties, such as the thickness.

Figure 4.11 shows a Voronoi cellular structure that infills the volume of a human femur

bone imported in the STL file format. Figure 4.12 illustrates stochastic Voronoi structures

modeled with LF-rep that conform to random polyhedrons.

As mentioned in Section 3.4, the graph representation of a cellular structure is beneficial
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Figure 4.10 Surface-based cellular structure transition between the gyroid
and Schwarz P topologies. The thickness of the structure varies vertically.

to estimating its mechanical and physical properties. It is proposed for future research that

the graph representation is included as metadata with the geometry itself within a CAD

file format.

4.5 Conformal cellular structures

In this section, the intricacies of implementing conformal cellular structures are discussed,

focusing specifically on surface and volume conformality aspects that are discussed in Sec-
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Figure 4.11 A stochastic Voronoi infill of a human femur bone

Figure 4.12 Stochastic Voronoi structures that conform to random polyhe-
drons

tion 4.5.1 and Section 4.5.2, respectively. These two subsections provide a detailed exami-

nation of the practical application of the proposed LF-rep approach for designing conformal

cellular structures with defined surface and volume properties. By shedding light on the

implementation process and its implications, this section demonstrates the versatility and

effectiveness of the proposed approach in handling the complexities of conformal cellular

structures, thus paving the way for enhanced design and performance in various industrial

applications.
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4.5.1 Surface conformality

The method described in Section 3.5.1 is implemented in a software prototype by incor-

porating NumPy (Harris et al., 2020) numerical operations in it. For example, consider a

simple cubic topology that conforms to a surface defined by the equation

Φ(X) : y =
5 sin(x)

x
for x ∈ [−25, 25], z ∈ [0, 15]. (4.5)

The function P is defined to control the beam thickness t as

P (X) : t(x) = 0.125 + |0.025x|. (4.6)

Let Nx = 18, Ny = 5, and Nz = 2 be the numbers of unit cells along the x-, y-, and z-axes,

respectively. Let one layer of unit cells along y be of the normal distance h/2 = 2 mm.

The method requires the normal vector field defined for Φ(X). The normal vector field can

be obtained by rotating the tangent vector by π/2 and normalizing it. The tangent vector

can be obtained by calculating the derivative of Φ, which is equivalent to the slope of the

tangent line at any point on the curve:

k =
∂Φ(X)

∂x
=

x cos(x)− sin(x)

x2
. (4.7)

The furthest equidistant surfaces Φ+ and Φ− from the middle plane Φ are numerically

obtained from the slope of the normal line, which is the negative reciprocal of the tangent

line’s slope, or

−1

k
= − x2

sin(x)− x cos(x)
. (4.8)



4 Implementation 127

Afterward, the normal line equation with the normal distance h/2 = 2 mm can be obtained.

For all (xk, yk, zk) ∈ Φ(X), the corresponding points of the equidistant surfaces Φ+ and Φ−

can be derived from the Euclidian distance and the normal line equation as a solution of


(x− xk)2 + (y − yk)2 =

(
h
2

)2
,

y − yk = 1
k
(x− xk),

(4.9)

which, in this case, results in

x =
2B ±

√
(2B)2 − 4AC

2A
, (4.10)

where A = 1 + 1
k2

, B = xk + xk

k2
, C = x2

k +
(
xk

k

)2 − (h
2

)2
. The two solutions correspond to

Φi and Φ+ since they are both equidistant to Φ. The resulting structure of this example is

shown in Fig. 4.13.

Figure 4.13 A cellular structure with varying thickness conforming to a
surface

4.5.2 Volume conformality

As mentioned in Section 4.4, the initial step involves generating a cellular structure that

fills the desired volume using NumPy. The volume can be set as an imported STL file.
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Once the structure is generated, the trimming is commenced by identifying the vertices and

their corresponding trimmed edges that lie on the boundary of the STL file. This allows

us to have better control over the edges that will be included in the final cellular structure.

Next, a sweep method from the OCCT GMK is introduced to connect points of the

graph more efficiently and precisely. By utilizing the sweep function, smooth connections

between the trimmed edges and the boundary of the STL file can be created, resulting

in a more conformal representation of the volume. This also aids in mitigating the edge-

trimming effect by ensuring that the edges of the graph are connected seamlessly to the

boundary of the volume.

By refining the volume conformality implementation, a better representation of the

cellular structure within the desired volume can be achieved, paving the way for improved

performance and reliability in various applications. Figure 4.11 demonstrates the improved

conformal stochastic structure that fills the volume of a human femur bone imported in

the STL file format.

Similarly to Intralattice, the proposed approach allows the modeling of conformal cel-

lular structures. Intralattice allows the modeling of conformal cellular structures by trans-

forming the coordinate system to a different one, such as the example illustrated in Fig. 2.18.

However, in this case, the cellular structure density decreases further away from the wheel’s

axle. This cellular structure is homogeneous in cylindrical coordinates as radius ρ, angle ϕ,

and z-axis remain constant for each unit cell. In Cartesian coordinates, x = ρ cos(ϕ) and

y = ρ sin(ϕ) cannot remain constant. Moreover, the torsional shear stress increases lin-

early with ρ (Hartog, 1977). The proposed approach allows increasing the beam thickness

in the ρ-direction so that the cellular structure becomes heterogeneous even in cylindri-

cal coordinates, as seen in Fig. 4.14, thus illustrating a possible example of a real-world

application.
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Figure 4.14 (a) An isometric and (b) a profile view on a conformal hetero-
geneous cellular tire design modeled with the beam thickness increase further
away from the wheel axle (Letov and Zhao, 2022)

4.6 LatticeQuery – the implemented FOSS tool

The LatticeQuery library was developed to be used from within CQ-editor (Urbanczyk

et al., 2021a) – an inline editor with a CAD viewer developed for CadQuery. The organi-

zation of the methodology is presented in this section. The software is developed to make

it modular and easily extendable, as well as simple to use.

This section presents the architecture (Section 4.6.1) and usage (Section 4.6.2) of the

LatticeQuery library, which allows for the generation and manipulation of cellular struc-

tures.

4.6.1 Architecture

The inline editor is used to provide commands to the LatticeQuery library. LatticeQuery

uses parametric methods from CadQuery to access the low-level functionality of OCCT

and to generate a cellular structure according to the user commands. CadQuery can send

status messages from OCCT to the traceback status menu. The resulting geometry is then
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presented in the CAD viewer and can be exported in a CAD file via the object menu. OCCT

supports exports in STL and STEP file formats. The software architecture is illustrated in

Fig. 4.15.

Figure 4.15 The high-level software architecture of the LatticeQuery li-
brary (Letov and Zhao, 2023b)

The library uses the OCCT instructions provided by CadQuery to generate the geometry

of the predefined topologies, which can be called from the inline editor. Several standard

functions are shared between the topologies. These functions include the generation of the

design space subdivided for all unit cells, the generation of beams by two points, and the

cross-section parameters. The library architecture is presented in Fig. 4.16.

Figure 4.17 demonstrates the main window of the software prototype, which utilizes

LatticeQuery. The resulting library is published under a permissive license and is accessible

as a FOSS (Letov, 2022). Releasing software as a FOSS is an advantage compared to

existing commercial solutions since the total cost of ownership is minimized (Shaikh and
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Figure 4.16 The low-level software architecture of the LatticeQuery li-
brary (Letov and Zhao, 2023b)

Cornford, 2011), and enthusiasts can introduce further advancements into the software.

Figure 4.17 The main window of the software prototype that embeds Lat-
ticeQuery (Letov and Zhao, 2023b)

4.6.2 Usage

As an example of the application of the algorithm, consider the BCC heterogeneous

cellular structure that is shown in Fig. 4.17, which is modeled with LatticeQuery. The
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1 from lq.topologies.bcc import bcc_heterogeneous_lattice

2 # USER INPUT

3 unit_cell_size = 10.0

4 min_strut_diameter = 0.8

5 max_strut_diameter = 5.0

6 min_node_diameter = 0.88

7 max_node_diameter = 5.5

8 Nx = 4

9 Ny = 4

10 Nz = 20

11 # END USER INPUT

12 # Register the custom plugin before use.

13 cq.Workplane.bcc_heterogeneous_lattice = bcc_heterogeneous_lattice

14 result = bcc_heterogeneous_lattice(unit_cell_size, min_strut_diameter,

max_strut_diameter, min_node_diameter, max_node_diameter, Nx, Ny, Nz,

topology = 'bcc', rule = 'parabola')
↪→

↪→

Listing 3: The programming script that models the heterogeneous cellular structure illus-
trated in Fig. 4.17

input parameters remain the same as in the example presented in Fig. 4.2. The solid model

can be obtained with the programming script shown in Listing 3.

In this case, the minimum and maximum values of the beam diameter are specified.

Note that the lattice nodes are represented as spheres with their diameter following a

similar parabolic distribution. The topology is set to BCC, with other possible variations

of the BCC topology being BCCz, S-BCC, and S-BCCz.

Another example of generating a heterogeneous Schwarz P cellular structure shown in

Fig. 4.1 is presented in Listing 4.

Multiple more documented examples, as well as the installation manual, are present in

the open repository of LatticeQuery (Letov, 2022).
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1 from parfunlib.topologies.schwartz import schwartz_p_heterogeneous_lattice

2 cq.Workplane.schwartz_p_heterogeneous_lattice =

schwartz_p_heterogeneous_lattice↪→

3 # BEGIN USER INPUT

4 unit_cell_size = 4

5 Nx = 10

6 Ny = 10

7 Nz = 10

8 min_thickness = 0.1

9 max_thickness = 7

10 # END USER INPUT

11 schwartz = schwartz_p_heterogeneous_lattice(unit_cell_size, min_thickness,

max_thickness, Nx, Ny, Nz)↪→

Listing 4: The programming script that models the heterogeneous cellular structure illus-
trated in Fig. 4.1

4.7 Computational performance

The developed software prototype was tested on a machine equipped with the AMD

Ryzen™; 7 3700X CPU with 3.20 GHz clock rate, the NVIDIA® GeForce® RTX 2070

Super GPU with 8 GB of memory, 16 GB of RAM, a solid-state drive, and the ArchLinux

OS. The mesh precision was set to 0.1mm. CadQuery and, by extension, the developed

software prototype allow changing the mesh precision in the settings. The performance

of the software prototype of the proposed approach is listed in Table 4.1. The generation

time for the beam-based cellular structures was discovered to be 1.843 s per unit cell on

average (as a result of all topologies tested once with 0.1 mm precision). The results for

the TPMS-based cellular structure are 6.453 s per unit cell on average. Note that the

difference in computational efficiency of the geometric modeling of homogeneous and het-

erogeneous cellular structures is negligible. This is because this work focuses mainly on
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modeling heterogeneous cellular structures, and homogeneous cellular structures lie out-

side the scope of this thesis. These results align with the expectations considering that

optimization techniques such as GPU acceleration are not yet introduced to the software

prototype. Furthermore, the algorithm complexity is identical to traversing a 3D matrix of

the size N , which is O(N3) (Cohen-Or and Kaufman, 1997).

Table 4.1 The performance metrics of the modeling with the proposed
approach.

Topology
Number
of unit
cells

Figure
CPU usage
range

GPU usage
range

RAM
usage

Generation
time

Schwarz P 1000 Figure 4.1 65.5–104.0% 388–406 MB 2.7% 122.70 min

BCC 720 Figure 4.2 36.8–101.0% 344–452 MB 1.7% 23.20 min

Schwarz P 2000 Figure 4.3 54.7–105.3% 390–533 MB 2.2% 121.30 min

The resulting model can be saved as an STL file and as a STEP file. The STL and STEP

export is made possible by the support of STL and STEP by Open CASCADE. Notably,

FLatt Pack and MSLattice do not support export to STEP. The STEP file format is rarely

used in AM itself but can be used as an input for a CAE simulation in software such as

Ansys (ANSYS Inc., 2014).

The output STL files were successfully imported into slicing tools such as Ultimaker

Cura (Ultimaker BV., 2013) and Preform (Formlabs Inc., 2019). As a potential future

feature, a pivot from ASCII STL to binary STL could be made to decrease the size of the

output files. CadQuery supports only ASCII STL files, but Open CASCADE supports

binary STL files. Thus, further optimization will focus on building a different method for

CadQuery to export binary STL files. Also, as of now, LF-rep is packed into an importable

library, but no significant effort has been made to provide a proper GUI for the proposed
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method. While this was deemed acceptable for the scope of this work to provide a proof

of concept, it can be more appealing for the actual designers of cellular structures to have

a proper GUI.

While the performance of the developed software prototype is suitable for an MVP, for

future improvements, it is essential to consider an enhanced geometric modeling approach

with access to the low-level GMK functionality (Xu, 2009). It might involve developing a

novel GMK to enable functionality not provided by Open CASCADE. However, the devel-

opment of a GMK is outside the scope of the proposed MVP, as a GMK is often developed

by a substantial team of mathematicians and programmers over several years (Golovanov,

2014). At the same time, having a GMK highly tuned to the scope of the proposed work

does not solve the immediate problem of modeling heterogeneous cellular structures.

It is also noticeable that the software prototype does not make much use of the GPU

and almost solely relies on the CPU. Appropriate utilization of the GPU is crucial for a

geometric modeling tool operating with cellular structures, as GPUs are generally better

suited for dealing with large amounts of parallel tasks. Specific changes must be made

to the GPU utilization process to make the modeling process more efficient. GPU ac-

celerated rendering of volumetric data with geometric modeling tools that utilize sparse

voxel octrees, such as OpenVDB (Academy Software Foundation, 2012), is particularly of

interest for future research. Such GPU acceleration could potentially facilitate the creation

of an agile concurrent cellular structure design tool by minimizing the time needed for

rendering (Cordero et al., 2020).

There is evidence that considering the bio-inspired nature of cellular structures in gen-

eral, the geometric modeling approach suitable for their generation could utilize bio-inspired

algorithms as well (Letov and Zhao, 2021).

The manufacturability of a cellular structure is also an important aspect to consider
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when analyzing the resulting models (Zhang and Zhao, 2022). The manufacturability check

is run on the resulting STL models using the Preform 3D printing software (Formlabs Inc.,

2019).

It was decided to run the manufacturability checks for the transition plane connectivity

similar to the example shown in Fig. 4.6 with all combinations of topologies inspired by

the crystal metal structure and that are listed in Fig. 3.4. Also, the same manufactura-

bility checks have been performed for the truncation-based topology transition. The basic

manufacturability checks within the software have been successfully passed.

Figure 4.18 A use-case showing the cellular structure transition with the
proposed approach: (a)The orientation of topologies for the manufacturability
performance test and (b) the resulting print with a zoomed-in view on the
topology transition region. In the zoomed-in view, the transition planes are
marked with dotted lines, and the instances of the FCC and BCC unit cells
are marked with dashed lines (Letov and Zhao, 2023a).

Moreover, a case with multiple transitions of topologies was decided to be manufactured

with the Formlabs Form 2 stereolithography 3D printer (Formlabs Inc., 2018). Stereolithog-

raphy 3D printers allow highly accurate AM with a smooth finish (Bhattacharjee et al.,

2018). The material was chosen to be Formlabs Elastic 50A (Formlabs Inc., 2020b). It was

decided to have 5 layers of FCC and 5 layers of BCC, each with an equal layer thickness

and oriented at 45◦ to the horizontal plane as illustrated in Fig. 4.18a. The FCC unit cell is

cubic, and its size is set to u1 = 3.75 mm. The BCC unit cell is cuboid, and according to the
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framework described in Section 3.3.1 and Fig. 3.11, its smaller side is u2 = u1/
√

2 ≈ 2.65

mm. The beam diameter for both topologies is set to d = 0.7 mm, and the node diameter

is set to D = 0.75 mm. Additional 3.75 mm thick plates were added at the bottom and

top of the cellular structure to support it during the AM process. The resulting print is

illustrated in Fig. 4.18b. Note that one of the plates is bent in an arc, and its shrinkage can

be explained by the residual stress occurring during the print, as this plate was attached

to the printing platform (Milovanović et al., 2018).

4.8 Implementation summary

This chapter presented the implementation details of the proposed approach for model-

ing and generating cellular structures for AM. After discussing the software environment,

programming languages, and libraries used to develop the framework, the key steps in the

process were described, including unit cell creation and variation of geometric parameters.

The chapter highlighted important algorithms and techniques employed to achieve the

desired results. These include the choice of unit cell types, the implementation of different

topologies, and the application of design requirements. Furthermore, the generation of

heterogeneous structures was explained.

Additionally, the solid model post-processing and validation steps were discussed, such

as mesh generation and model preparation for AM. Finally, the versatility and adaptability

of the implemented framework were showcased by demonstrating various modeled cellular

structures.

This comprehensive implementation lays a solid foundation for the case studies pre-

sented in Chapter 5, which will demonstrate the practical applications and effectiveness of

the proposed approach in creating a diverse range of cellular structures for AM.
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Chapter 5

Case studies

To succeed, planning alone is insufficient. One

must improvise as well.

Isaac Asimov (1920 – 1992), Foundation

This chapter presents a series of real-world examples to demonstrate the application of

the LF-rep geometric modeling approach to various scenarios. These case studies showcase

the versatility and effectiveness of the method in addressing different challenges in cellu-

lar structure modeling. Some of these case studies are based on published research, while

others present novel applications of the methodology. Each case study provides insights

into the unique aspects of the modeling process, highlighting the advantages and potential

improvements of the proposed approach. These case studies provide the practical impli-

cations of the geometric modeling technique and its potential impact on cellular structure

design.

This chapter demonstrates the practical application of the proposed geometric modeling

methods through two real-world examples. Section 5.1 explores the geometric modeling of

cellular structures to estimate their flow and thermal characteristics. This section delves
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into the geometric, flow, and thermal properties of cellular structures, reviews existing

experimental results, outlines the methods employed, and presents the results obtained.

In Section 5.2, the focus shifts to a multifunctional non-pneumatic tire design, showcasing

the versatility of the proposed methods. This section covers the ideation and conceptual

design process and presents the results achieved in creating an innovative tire design using

the geometric modeling techniques discussed in earlier chapters. These case studies serve

to illustrate the practical implications and potential benefits of the proposed methods in

real-life applications. Section 5.3 contains visual examples of the cellular structures created

with the methodology discussed in this thesis.

5.1 Geometric modeling of cellular structures to estimate their

flow and thermal characteristics

This section highlights a case study on the flow and thermal characteristics of non-stochastic

strut-based and surface-based cellular structures in the aerospace sector (Sarabhai et al.,

2023). With the advent of AM (Blakey-Milner et al., 2021), the aerospace industry has

shown increased interest in producing geometrically complex parts, such as cellular struc-

tures. Lattice structures, consisting of repeating geometric patterns of unit cells, of-

fer lightweight and high thermal properties (Xu et al., 2021), making them suitable for

aerospace applications.

However, limited information is available regarding the flow and thermal properties of

cellular structures. While the mechanical properties have been extensively studied (Köhnen

et al., 2018), a systematic investigation of the effects of different topologies on flow and

thermal properties is still lacking. This case study aims to comprehensively analyze the

flow and heat transfer in periodic 3D cellular structures with topologies based on struts
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and TPMS.

The case study involves the geometric modeling of cellular structures and CFD simu-

lation to model the flow continuum in a gas turbine context. The findings are intended to

serve as a guideline for selecting cellular structure topologies based on desired operating

and manufacturing conditions for a gas turbine. It is important to note that the study

only considers the influence of geometry on the structural analysis of various topologies

and does not address material selection for cellular structure design.

5.1.1 Geometric, flow, and thermal properties of cellular structures

This section provides a comprehensive overview of the properties and characteristics of

lattice structures, focusing on their geometric properties. The relative density ρ′ of a

cellular structure is a crucial factor for comparing different topologies, as two different

lattice structures can often be compared if they have the same relative density (Bai et al.,

2019). Other important properties are used to compare cellular structures, such as porosity

ϕ and apparent porosity ∅AP (Ashby, 2006).

Various strut-based and surface-based lattice topologies are inspired by cubic crystal

structures, including primitive (simple cubic), BCC, FCC, octahedron, and octet-truss

topologies. The additional z-oriented struts in BCCz and FCCz topologies transform the

normally bending-dominated BCC and FCC into stretch-dominated topologies (Leary et al.,

2018).

The available surface area of the topology per unit actual volume of the solid body

AL/VS ratio is important in analyzing the geometry of cellular structures. This ratio is

proposed to be used to compare the thermal properties of different topologies, as surface

area plays a vital role in heat transfer rate through any structure (Letov and Zhao, 2021).

The flow and thermal properties of cellular structures are analyzed to understand the
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heat transfer in various topologies. Heat transfer is typically quantified by estimating the

system’s heat transfer coefficient h, with the heat transfer rate Q being a function of the

available surface area in contact AL (Park et al., 2022b):

Q = hAL∆T, (5.1)

where ∆T is the temperature difference between the solid surface and the surrounding

fluid. TPMS topologies, such as gyroid and Schwarz D, have been found to provide a large

surface area, allowing for increased convection and conduction (Jones et al., 2022).

The Reynolds number Re is an essential characteristic of fluid flow, allowing for the

comparison of the ratio of inertial forces to viscous forces in different flows. Minimizing

pressure losses ∆P within gas turbines is vital in the aerospace and automotive industries.

The Darcy–Weisbach equation defines pressure loss and can be used to analyze the Darcy

friction factor f , estimating pressure loss and flow properties. The equation is

∆P = f
L

d

ρf v̂
2

2
, (5.2)

where L is the characteristic length of the pipe, d is the hydraulic diameter, v̂ is the mean

flow velocity of the fluid, and ρf is the fluid density. All these parameters, except for f , do

not depend on the topology of the cellular structure.

The AL/VS ratio is proposed to be used to understand and compare the thermal perfor-

mance of lattice structures. It is proposed to study its effect on heat transfer in this case

study.
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5.1.2 Existing experimental results

This case study also examines existing experimental results from the literature on heat

transfer in cellular structures. The flow and thermal properties of surface-based cellular

structures, especially in gas turbine applications, have generally been understudied com-

pared to strut-based topologies (Deng et al., 2021). The literature analyzes different cellular

structures’ flow and thermal properties by varying input parameters. Strut-based cellular

structures are typically analyzed through CFD simulations, while surface-based structures

are more commonly analyzed in real experimental setups (Guo et al., 2022).

Surface-based cellular structures are more complex geometrically, making meshing, dis-

cretization, and CFD analysis more challenging (Catchpole-Smith et al., 2019). The study

aims to compare the results obtained for strut-based cellular structures with similar simu-

lation results from the literature and compare surface-based cellular structures with actual

experimental results.

During the literature review, a list of cellular structure topologies was gathered and the

data was filtered to obtain the frequency of different topologies studied for mechanical and

thermal performance. This data is plotted in Fig. 5.1. BCC is the most common topology

encountered in the reviewed works. Cellular structures were found to be primarily used

in the aerospace industry sector (53.65% of analyzed works), followed by the biomechanics

sector (27.05%).

The top 90% of the lattice structures (colored dark in Fig. 5.1) were selected for further

study of their flow and thermal characteristics, including both strut-based and surface-

based structures. Section 5.1.3 explains the modeling of these lattice structures.
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Figure 5.1 The statistics on the use of different topologies in the litera-
ture (Sarabhai et al., 2023)

5.1.3 Methods

This section examines the methods used for geometric modeling, mesh generation, and

simulations of cellular structures in the case study. The selected topologies include strut-

based topologies (primitive, BCC, BCCz, FCC, FCCz, octahedron, and octet-truss) and

surface-based topologies (TPMS gyroid and Schwarz D). These topologies represent the

top 90% cellular structures investigated in the literature.

Geometric modeling starts by defining the geometric parameters of the chosen topolo-

gies. Average dimensions were extracted from the literature: average strut thickness (1.10

mm), average thickness for surface-based lattices (1.37 mm), and average porosity (87%).

For strut-based cellular structures, Siemens NX (Siemens Digital Industries Software,

2023a) and Simcenter STAR-CCM+ (Siemens Digital Industries Software, 2023b) were

used for geometric modeling and surface repair of CAD models, respectively. Unit-cell size

u was set to 10 mm, and the thickness range was 1.0 mm, 1.5 mm, and 2.0 mm. Geometric
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models of 21 cellular structures were generated.

Surface-based cellular structures, such as TPMS, are defined by equations and cannot

be easily modeled with conventional CAD software. Approximate implicit mathematical

functions define TPMS topologies, so the F-rep method proposed in this thesis was used

for geometric modeling (Letov and Zhao, 2022). Gyroid and Schwarz D topologies were

modeled with LatticeQuery (Letov, 2022).

In this case study, simulations are conducted to investigate the flow and thermal proper-

ties of cellular structures. A cylindrical computational flow domain with a cellular structure

network of 3× 3× 9 = 81 unit cells is chosen. Three strut diameters or thicknesses are an-

alyzed: 1.0 mm, 1.5 mm, and 2.0 mm. The nomenclature used is the name of the topology,

followed by the strut thickness (e.g., BCC1, FCC1.5, and BCCZ2).

Meshing or discretization is carried out with three regions of different mesh densities.

The tetrahedral mesh is chosen for its easy generation and compatibility with most FEA

simulation software packages (Zhang et al., 2020). A mesh convergence study is performed

and is discussed in Section 5.1.4.

Siemens Energy Canada Limited provided boundary conditions, and three different

values of the Reynolds number Re were used to represent different turbulent intensities.

The Mach number was set to Ma < 0.3 for the inlet velocity. It was assumed that air

is a dry, perfect gas, and the k − ω shear stress transport (SST) model was applied for

turbulence (Al-Waked and Behnia, 2004). Eddy viscosity was added to model energy

conservation more realistically.

81 simulations analyzed seven strut-based and two surface-based topologies with three

thicknesses and three turbulent intensity settings. The convective heat transfer coefficient

and friction factor were calculated and compared to a standard flow channel. Detailed

simulation results are discussed in the following section.
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5.1.4 Results

This section presents the results obtained from the design to the simulation phase. The

simulation setting is presented in Fig. 5.2. The sensitivity analysis determined the optimal

plane for measuring output parameters at 55 mm. The mesh convergence study resulted

in an average base/element size of 0.4 mm with 9 832 216 elements, as seen in Fig. 2.3.

Figure 5.2 The simulation setting and planes chosen for sensitivity analy-
sis (Sarabhai et al., 2023)

The apparent porosity ∅AP and AL/VS ratio of cellular structures were investigated,

revealing that as the apparent porosity increases, AL/VS decreases (Fig. 5.3). The heat

transfer rate Q was found to increase close to linearly with the surface area of the lattice,

as expected from Equation 5.2 (Fig. 5.4). Note that the heat transfer rate Q here was

divided by the temperature difference between gas and solid ∆T since Equation 5.1 can

be rearranged such that the vertical axis can be considered the heat transfer coefficient h

multiplied by the surface area AL of the entire lattice.

Flow and thermal properties charts such as the one in Fig. 5.5 were created to visual-

ize the correlation between flow and thermal properties. Inspired by the Ashby plotting
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Figure 5.3 AL/VS ratio vs. ∅AP of strut-based and surface-based cellular
structures (Sarabhai et al., 2023)

method (Ashby, 2006), these charts help design engineers choose the best-suited structures

for specific operating conditions, especially at high Reynolds numbers when obtaining ex-

perimental data is costly. Here, f0 is the friction factor of a similar and hydraulically

smooth channel which correlates with the Reynolds number Re. As a result, the friction

factor ratio f/f0 is used to compare the friction factor of various structures.

This case study investigated the thermal and flow behavior of strut- and surface-based

cellular structures for gas turbine design. The friction factor ratio f/f0 is found to be

highest for TPMS-based topologies with a 2.0 mm thickness in laminar flow and the octet-

truss topology with a 2.0 mm thickness in turbulent and highly turbulent flows. The results

validate that gyroid TPMS structures perform better than Schwarz D TPMS structures (Li

et al., 2022b).

The airflow path is found to be an important parameter in investigating the friction

factor values of cellular structures. Flow characteristics suggest that aligning struts or

holes in the direction of the airflow path can reduce pressure loss. The general trend of

the heat transfer coefficient h increasing with the Reynolds number Re is consistent with
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Figure 5.4 Dependency of the heat transfer variationQ/∆T on the available
surface area per unit total volume AL/VS for (a) Re = 1.8 · 103, (b) Re =
30.0 · 103, and (c) Re = 292.0 · 103 (Sarabhai et al., 2023)

experimental findings (Soloveva et al., 2022).

The obtained flow and thermal properties charts aid in selecting lattice structure topolo-
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Figure 5.5 A flow and thermal property chart illustrating the distribution
of the heat transfer coefficient h and the friction factor ratio f/f0 for various
Reynolds numbers, topologies, and thicknesses (Sarabhai et al., 2023)

gies for specific operating conditions and agree with the work of Catchpole-Smith (2019).

The study concludes that the gyroid topology is a superior choice among surface-based lat-

tice structures, while FCC and FCCz structures are better among strut-based structures.

This case study showcases that the loop from design to CFD simulation can be closed

with the proposed approach.
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5.2 Multifunctional non-pneumatic tire design

5.2.1 Ideation and conceptual design

A new bio-inspired non-pneumatic multifunctional tire design is developed using the Do-

main Integrated Design (DID) method (Velivela et al., 2021) in this case study. Figure 5.6

shows the multi-functional non-pneumatic tire design schematic sketch. The outer surface

of the tire is inspired by snakeskin for effective friction management. Two different de-

signs for the internal structure of the tire are chosen, both inspired by nature for impact

resistance: one by the beak of a great spotted woodpecker (Dendrocopos major), and the

other by the peel of pomelo (Citrus maxima). Woodpecker’s beak has a varying porosity

starting from 30% at the tire interface, 65% in the middle, and 30% at the central region

of the tire (Wang et al., 2013). Pomelo peel has a varying porosity of 40% at the tire

interface, followed by 50% in the middle and 30% at the central region (Zhang et al., 2019).

To evaluate the impact resistance of tires, it is necessary to understand the interaction of

the tire and pavement. The tires do not have line contact with the pavement; instead, has

a patch. It is observed that in a pneumatic tire, the patch is in the form of an ellipse;

for a non-pneumatic tire, the patch is in the form of a rectangle (Kim et al., 2013). The

modeling and analysis are performed on patches and not the entire tire. The modeling and

analysis of snake-inspired texture are not performed. This case study aims to validate the

meta-level parameter for selecting the correct biological analogy and solving the convergent

evolution problem.

Several cellular topologies can be modeled to approximate the original conceptual de-

sign. One of the topologies most closely resembling the intended design is the Schwarz P

surface topology. Geometric modeling is a critical factor affecting a conceptual design’s

success, such as the novel tire design proposed in this case study (Letov and Zhao, 2022).
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Figure 5.6 The initial conceptual designs that were produced in the ideation
process (Velivela et al., 2023)

The cellular structure modeling approach proposed in this thesis was decided to use in this

study. This approach allows the geometric modeling of cellular structures based on TPMS

with varying parameters. This framework has been incorporated into the open-source soft-

ware LatticeQuery. From the industrial analogs of tires, it was found that the tire radius is

commonly chosen to be R = 203 mm. Since only the point of contact between the tire and

the road surface actively participates in the wheel locomotion, a single column in the radial

direction can be chosen for the finite element modeling (FEM) simulation. The column for

both proposed designs has three regions with different porosities, sketched in Fig. 5.7. In

this sketch, O is the location of the tire axis, and rI , rII , and rIII signify the upper limits

of regions I, II, and III, respectively. The three regions are assigned different porosities to
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represent the natural analogs closely. For the woodpecker-inspired design, the porosities

ϕw in regions I, II, and III are ϕwI
= ϕwIII

= 30%, ϕwII
= 65%. For the pomelo-inspired

design, the porosities ϕpI = 40%, ϕpII = 50%, ϕpIII = 30%. The column should fit a

significant amount of unit cells of the lattice. Thus, it was decided to use the base unit

cell size of u = 3.98 mm. Woodpeckers are known to have the porous region corresponding

to region II elongated in the load direction. Thus, it was decided to have unit cells in the

woodpecker region II elongated by 50% in the r-direction.

Figure 5.7 A single column is split into three regions with different porosi-
ties (Velivela et al., 2023)

LatticeQuery supports setting variable thickness t in a specific direction, not the porosity

ϕ. However, the geometric properties of the Schwarz P surface have been studied well

in literature (Gandy and Klinowski, 2000), and these findings were used to estimate its

porosity based on thickness t as

ϕ = 1− ρ′ = 1− At

V
= 1− K(1/4)t

16K(3/4)u
, (5.3)
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where ρ′ is the relative density of the lattice, V = u3 is the volume of the cubic unit cell,

A = K(1/4)t
16K(3/4)u

is the surface area of the Schwarz P surface, and K denotes a complete

elliptic integral of the first kind. The 3D print plugin for the Blender computer graph-

ics software (Blender Foundation, 2016) validated the lattice thickness, which provided a

proper estimate of the volume (Froehlich et al., 2021). It was found that the porosity

ϕwI
= ϕwIII

= ϕpI = 30% can be ensured by t = 1.34 mm; ϕwII
= 65% by t = 0.61 mm;

ϕpII = 50% by t = 0.89 mm; and ϕpIII = 40% by t = 1.10 mm.

5.2.2 Results

The STL mesh was decided to be simulated with FEM in Abaqus Standard Edition

2021 (Dassault Systèmes SE, 2023). A contact patch of the tire is commonly subject

to loads of 2 · 103 N (Persson, 2010). Since only one column is analysed, it is sufficient

to spread this load across 45 × 11 = 495 unit cells, resulting in a 4 N load per column.

The safety factor for the load on the tire is estimated at 1.125 (Pal Singh, 2010), resulting

in a 4.5 N load per column. Elongation was found to be one of the key characteristics

that are used to analyze the effectiveness of a tire (Ratrout and Mahmoud, 2006). Rigid

polyurethane was chosen as the material for the simulation. Figure 5.8a and Fig. 5.8b illus-

trate the result of the FEM simulation for single columns corresponding to the woodpecker-

and pomelo-inspired designs, respectively. The maximum values of the magnitude of elon-

gation are 84.77 and 91.20 for the woodpecker- and pomelo-inspired designs, respectively.

These values are significantly lower than the estimated elongation at break, which is esti-

mated to be over 200 (Faizah et al., 2019). Note that the region I directly contacts the road

surface in both cases is the most elongated one. This effect was expected in the conceptual

design phase and motivated to provide region I with lower Porosity than the other two

regions. Lower porosity results in a higher material interaction area and, thus, lower the
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deformation.

Figure 5.8 The simulation results show the magnitude of elongation for (a)
the woodpecker- and (b) the pomelo-inspired tire designs (Velivela et al., 2023)

It is evident that the woodpecker’s beak has a low porosity in the region I, which is in

direct contact with the road, has a higher interaction area, and thus has a low deformation.

This simulation validates the initial hypothesis to select the features with a higher Interac-

tion area and low Porosity for the applications involving adsorption/absorption functions.

The analysis is performed to validate the meta-level parameter “interaction area” pro-

posed for selecting biological analogy in the DID method. Two use cases of novel tire designs

were conceptually designed, modeled with LatticeQuery, and simulated with Abaqus. The

concepts covered in this work are an example of multifunctional design. The obtained re-

sults confirm the initial hypothesis derived from the DID methodology, that is, to select the

biological analogy with a significant interaction area for the applications of adsorption/ab-

sorption.

This case study showcases that the loop from design to FEA simulation can be closed

with the proposed approach.
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5.3 Printed cellular structures modeled with the proposed

approach

This section presents a collection of figures showcasing the versatility and potential ap-

plications of the proposed approach in creating various cellular structures. Distinct case

studies will be examined, highlighting the diverse topologies used in the modeling process.

Figure 5.9a features a cellular structure with an FCC topology. This topology is rotated

45 degrees relative to the horizontal plane, resulting in a unique configuration. The material

used for this print is the Ti-6Al-4V alloy, known for its excellent mechanical properties and

biocompatibility. This example demonstrates the potential of the approach for creating

complex and customized cellular structures in metal AM.

Figure 5.9b highlights a gyroid cellular structure known for its intricate geometry. This

example further showcases the versatility and potential applications of the proposed ap-

proach in designing and fabricating unique cellular structures. The Formlabs Form 2 (Form-

labs Inc., 2018) SLA 3D printer, and BioMed Amber Resin (Formlabs Inc., 2020a) were

used for printing this and further structures of this section, emphasizing the compatibility

of the proposed approach with a range of materials and 3D printing technologies.

Figure 5.9c showcases an airless tire concept designed using a heterogeneous simple

cubic topology. Its solid model is shown previously in Fig. 4.14. The thickness of the lattice

structure increases towards the outer edge, providing enhanced support and durability in

the tire’s contact area.

Figure 5.9d presents a cellular structure with varying thickness that conforms to a

given surface. Its solid model is shown previously in Fig. 4.13. This structure showcases

the adaptability and flexibility of the proposed approach in creating custom designs tailored

to specific applications.
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Figure 5.9 Diverse cellular structures created using the proposed approach:
(a) Rotated FCC topology in Ti-6Al-4V alloy, (b) Gyroid cellular structure, (c)
Heterogeneous tire concept with simple cubic topology and increasing thick-
ness towards the outer edge, and (d) Cellular structure with varying thickness
conforming to a surface. All structures except (a) are printed with Form-
labs BioMed Amber Resin (Formlabs Inc., 2020a) using the Formlabs Form
2 (Formlabs Inc., 2018) SLA 3D printer.

While the main aim of the showcased structures in this section is to validate the print-

ability and design versatility of the proposed LF-rep approach, some of these printed sam-

ples underwent physical testing to assess their mechanical performance and validate the

theoretical underpinnings.

One such physical analysis was performed on the FCC topology rotated 45 degrees,

shown in Figure 5.9a. This structure was subjected to compression testing to evaluate
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its load-bearing capacity and mechanical response. It was compared with another printed

sample in Figure 4.18 to validate the premise that varying topologies can influence the

overall stiffness and structural behavior of the cellular design.

It is worth noting that while detailed and extensive physical studies on all printed arti-

facts were not performed, the above test serves as a preliminary validation of the capability

of LF-rep in achieving desired mechanical behaviors through informed topology choices. Fu-

ture studies can delve deeper into comprehensively testing and characterizing these cellular

structures to draw more definitive conclusions about their real-world performance.

This case study showcases that the loop from design to fabrication and testing can be

closed with the proposed approach.
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Chapter 6

Conclusion and future directions

Never say goodbye because goodbye means

going away and going away means forgetting.

James Matthew Barrie (1860 – 1937),

Peter Pan

This thesis presented a geometric modeling approach based on F-rep, referred to as

lattice-function representation (LF-rep), and expanded the freedom of designing hetero-

geneous cellular structures capable of creating stochastic, conformal, and multi-topology

configurations. The LF-rep approach allows the geometric modeling of stochastic struc-

tures by generating random parameters within certain bounds, ensuring the desired degree

of randomness. For conformal structures, the method adapts the cellular topology to con-

form to the underlying surface geometry, thereby enabling more efficient and seamless

integration with the overall design. Additionally, the approach is capable of infilling a

predefined volume. The approach enables the combination of multiple topologies within

a single structure, providing designers with greater flexibility in tailoring the properties

of the cellular material. Functionally controllable topology parameters such as thickness
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(for TPMS) and beam diameter (for beam-based cellular structures) can be modeled and

controlled by the proposed approach. A novel approach for transforming a topology from

one to another, which is based on the variation of geometric parameters, has been pro-

posed and implemented in a software prototype. Several use cases of topology transition

by the variation of the truncation parameter have been covered. The proposed method was

implemented in a software prototype and tested.

The integration in the design loop is proposed to be achieved by providing access and

guidance to the design community and to a list of manufacturers utilizing which utilize

cellular structures. The aerospace sector is one of the industry sectors that heavily relies

on lightweight structures with unique thermophysical properties and is thus proposed as a

potential venue for exploration. The tool is released as a documented FOSS and should

enhance the user experience and foster further agile development.

For future research, improvements to the software prototype are proposed. These im-

provements include computational optimization based on the results obtained in Section 4.7,

providing a proper GUI for using the tool, and other enhancements. GPU optimization

could enhance the design experience and be a step forward to collaborative cellular structure

design. A proper GUI would allow LF-rep to be integrated into a generic design workflow

with the most immediate goal of collecting user feedback. This feedback can then improve

the GUI and enhance the software’s performance. Such functionality would enable higher

design freedom.

The diamond beam-based cellular structure is an example of a beam-based topology

that does not have conventional nodes at the edges of its cubic unit cell. Moreover, the

properties of such cellular structures depend on the orientation of the unit cells. It is

proposed to investigate the application of the proposed approach to this topology. The

software prototype that embeds the proposed approach has been developed according to
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the object-oriented programming principles, which enables the further extension of the

framework.

The current version of the LatticeQuery software has a single-document interface. At

the same time, many modern CAD software packages possess a multi-document interface

(MDI) that allows simultaneously operating with multiple tabs of documents. It is proposed

to switch to the MDI for future versions of LatticeQuery.

Future work is also proposed to focus on supporting multi-scale hierarchical cellular

structures with the LF-rep approach.

Potential applications of LF-rep for enhancing topology optimization techniques are

proposed to be investigated for future research.
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Alsheghri, A., N. Reznikov, N. Piché, M. D. McKee, F. Tamimi, and J. Song,
2021: Optimization of 3D network topology for bioinspired design of stiff and
lightweight bone-like structures. Materials Science and Engineering: C, 123, 112 010,
doi:10.1016/j.msec.2021.112010.

An, X., and H. Fan, 2016: Hybrid design and energy absorption of luffa-
sponge-like hierarchical cellular structures. Materials & Design, 106, 247–257,
doi:10.1016/j.matdes.2016.05.110.

ANSYS Inc., 2014: Ansys – Engineering simulation software. URL https://www.ansys.com,
[Online; accessed March 17, 2023].

Antolin, P., A. Buffa, and M. Martinelli, 2019: Isogeometric analysis on V-reps: first
results. Computer Methods in Applied Mechanics and Engineering, 355, 976–1002,
doi:10.1016/j.cma.2019.07.015.

Arabnejad Khanoki, S., and D. Pasini, 2012: Multiscale design and multiobjective opti-
mization of orthopedic hip implants with functionally graded cellular material. Journal
of Biomechanical Engineering, 134 (3), 031 004, doi:10.1115/1.4006115.

Aremu, A. O., J. Brennan-Craddock, A. Panesar, I. Ashcroft, R. J. Hague, R. D. Wild-
man, and C. Tuck, 2017: A voxel-based method of constructing and skinning conformal
and functionally graded lattice structures suitable for additive manufacturing. Additive
Manufacturing, 13, 1–13, doi:10.1016/j.addma.2016.10.006.

Ashby, M. F., 2006: The properties of foams and lattices. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (1838), 15–30,
doi:10.1098/rsta.2005.1678.

Ashby, N., W. Brittin, W. Love, and W. Wyss, 1975: Brachistochrone with coulomb fric-
tion. American Journal of Physics, 43 (10), 902–906, doi:10.1119/1.9976.

Ashgriz, N., and J. Mostaghimi, 2002: An introduction to computational fluid dynamics,
chap. 24, 401–410. 1st ed., McGraw-Hill Education, New York, NY, USA.

https://doi.org/Optimal and continuous multilattice embedding
https://doi.org/Optimal and continuous multilattice embedding
https://doi.org/10.1080/0951192X.2021.1872106
https://doi.org/10.1016/j.msec.2021.112010
https://doi.org/10.1016/j.matdes.2016.05.110
https://www.ansys.com
https://doi.org/10.1016/j.cma.2019.07.015
https://doi.org/10.1115/1.4006115
https://doi.org/10.1016/j.addma.2016.10.006
https://doi.org/10.1098/rsta.2005.1678
https://doi.org/10.1119/1.9976


Bibliography 162

ASTM F2792-12, 2021: Standard Terminology for Additive Manufacturing Technologies.
Standard, ASTM International, West Conshohocken, PA, USA, 1–3 pp. URL https:
//www.astm.org/f2792-12.html.

Autodesk Inc., 2017: Fusion 360 with Netfabb. URL https://www.autodesk.com/products/
netfabb/overview, [Online; accessed March 15, 2023].

Azarov, A. V., F. K. Antonov, M. V. Golubev, A. R. Khaziev, and S. A. Ushanov, 2019:
Composite 3D printing for the small size unmanned aerial vehicle structure. Composites
Part B: Engineering, 169, 157–163, doi:10.1016/j.compositesb.2019.03.073.

Bai, L., C. Yi, X. Chen, Y. Sun, and J. Zhang, 2019: Effective design of the graded strut
of BCC lattice structure for improving mechanical properties. Materials, 12 (13), 2192,
doi:10.3390/ma12132192.

Bajaj, M., B. Cole, and D. Zwemer, 2016: Architecture to geometry – integrating system
models with mechanical design. AIAA SPACE 2016, 5470, doi:10.2514/6.2016-5470.

Balzannikov, M., V. Alpatov, I. Kholopov, A. Saharov, and A. Lukin, 2016: Usage of spa-
tial lattice metal structures as roofing for mechanical equipment rooms of hydroelectric
power stations. XV International Conference “Topical Problems of Architecture, Civil
Engineering, Energy Efficiency and Ecology”, Tyumen, Russia, EDP Sciences, Vol. 73,
01012, doi:10.1051/matecconf/20167301012.

Banovic, M., O. Mykhaskiv, S. Auriemma, A. Walther, H. Legrand, and J.-D. Müller,
2018: Algorithmic differentiation of the Open CASCADE Technology CAD kernel and
its coupling with an adjoint CFD solver. Optimization Methods and Software, 33 (4-6),
813–828, doi:10.1080/10556788.2018.1431235.

Bar-Cohen, Y., 2005: Biomimetics: biologically inspired technologies. CRC press, Boca
Raton, FL, USA, 552 pp., doi:10.1201/9780849331633.

Batty, C., F. Bertails, and R. Bridson, 2007: A fast variational framework for ac-
curate solid-fluid coupling. ACM Transactions on Graphics (TOG), 26 (3), 100–es,
doi:10.1145/1276377.1276502.

Bazilevs, Y., V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott,
and T. W. Sederberg, 2010: Isogeometric analysis using T-splines. Computer methods in
applied mechanics and engineering, 199 (5-8), 229–263, doi:10.1016/j.cma.2009.02.036.

Becker, H., V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang, 2021: Neon NTT:
faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. Cryptology ePrint
Archive, Paper 2021/986, 1–38, URL https://eprint.iacr.org/2021/986.

https://www.astm.org/f2792-12.html
https://www.astm.org/f2792-12.html
https://www.autodesk.com/products/netfabb/overview
https://www.autodesk.com/products/netfabb/overview
https://doi.org/10.1016/j.compositesb.2019.03.073
https://doi.org/10.3390/ma12132192
https://doi.org/10.2514/6.2016-5470
https://doi.org/10.1051/matecconf/20167301012
https://doi.org/10.1080/10556788.2018.1431235
https://doi.org/10.1201/9780849331633
https://doi.org/10.1145/1276377.1276502
https://doi.org/10.1016/j.cma.2009.02.036
https://eprint.iacr.org/2021/986


Bibliography 163

Ben Makhlouf, A., B. Louhichi, M. A. Mahjoub, and D. Deneux, 2019: Re-
construction of a CAD model from the deformed mesh using B-spline surfaces.
International Journal of Computer Integrated Manufacturing, 32 (7), 669–681,
doi:10.1080/0951192X.2019.1599442.

Bendsøe, M. P., and O. Sigmund, 2013: Topology optimization: theory, methods, and
applications. 2nd ed., Springer Science & Business Media, Berlin, Germany, 370 pp.,
doi:10.1007/978-3-662-05086-6.

Benyus, J. M., 1997: Biomimicry: Innovation inspired by nature. William Morrow, New
York, NY, USA.

Bhattacharjee, N., C. Parra-Cabrera, Y. T. Kim, A. P. Kuo, and A. Folch, 2018: Desktop-
stereolithography 3D-printing of a poly (dimethylsiloxane)-based material with sylgard-
184 properties. Advanced materials, 30 (22), 1800 001, doi:10.1002/adma.201800001.

Bikas, H., P. Stavropoulos, and G. Chryssolouris, 2016: Additive manufacturing methods
and modelling approaches: a critical review. The International Journal of Advanced
Manufacturing Technology, 83 (1-4), 389–405, doi:10.1007/s00170-015-7576-2.

Blakey-Milner, B., and Coauthors, 2021: Metal additive manufacturing in aerospace: A
review. Materials & Design, 209, 110 008, doi:10.1016/j.matdes.2021.110008.

Blender Foundation, 2016: Home of the Blender project – Free and Open 3D Creation
Software. URL https://www.blender.org/, [Online; accessed April 22, 2023].

Bloomenthal, J., C. Bajaj, J. Blinn, M.-P. Cani, B. Wyvill, A. Rockwood, and G. Wyvill,
1997: Introduction to implicit surfaces. Morgan Kaufmann, San Francisco, CA, USA.

Boender, E., W. F. Bronsvoort, and F. H. Post, 1994: Finite-element mesh generation
from constructive-solid-geometry models. Computer-Aided Design, 26 (5), 379–392,
doi:10.1016/0010-4485(94)90025-6.

Bonabeau, E., M. Dorigo, and G. Theraulaz, 1999: Swarm intelligence: from natu-
ral to artificial systems. 1, Oxford university press, New York, NY, USA, 293 pp.,
doi:10.1093/oso/9780195131581.001.0001.

Borrmann, A., T. H. Kolbe, A. Donaubauer, H. Steuer, J. R. Jubierre, and M. Flurl,
2015: Multi-scale geometric-semantic modeling of shield tunnels for GIS and BIM
applications. Computer-Aided Civil and Infrastructure Engineering, 30 (4), 263–281,
doi:10.1111/mice.12090.

Botsch, M., and L. Kobbelt, 2004: A remeshing approach to multiresolution modeling.
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry pro-
cessing, Nice, France, 185–192, doi:10.1145/1057432.1057457.

https://doi.org/10.1080/0951192X.2019.1599442
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1002/adma.201800001
https://doi.org/10.1007/s00170-015-7576-2
https://doi.org/10.1016/j.matdes.2021.110008
https://www.blender.org/
https://doi.org/10.1016/0010-4485(94)90025-6
https://doi.org/10.1093/oso/9780195131581.001.0001
https://doi.org/10.1111/mice.12090
https://doi.org/10.1145/1057432.1057457


Bibliography 164

Brasseur, V. M. V., 2018: Forge Your Future with Open Source: Build Your Skills. Build
Your Network. Build the Future of Technology. Pragmatic Bookshelf, Raleigh, NC, USA,
224 pp.

Braun, P., M. Sliwinski, J. Hinckeldeyn, and J. Kreutzfeldt, 2021: Challenges of CAD
conversion to 3D development environments with respect to kinematic dependencies.
Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020,
Oulu, Finland, 215–221, doi:10.3384/ecp20176215.

Bronstein, M. M., J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, 2017: Geometric
deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34 (4),
18–42, doi:10.1109/MSP.2017.2693418.

Brunet, P., C. Hoffmann, and D. Roller, 2000: CAD Tools and Algorithms for Product
Design. 1st ed., Springer Science & Business Media, Berlin, Germany, 165–177 pp.,
doi:10.1007/978-3-662-04123-9.

Burkhart, D., B. Hamann, and G. Umlauf, 2010: Iso-geometric finite element analy-
sis based on Catmull-Clark subdivision solids. Eurographics Symposium on Geometry
Processing 2010, Lausanne, Switzerland, Wiley Online Library, Vol. 29, 1575–1584,
doi:10.1111/j.1467-8659.2010.01766.x.

C3D Labs, 2020: C3D. Developer Manual. URL https://c3dlabs.com/source/documents/
en/2020-09-C3D Manual English.pdf, [Online; accessed March 9, 2023], 553 pp.

Catchpole-Smith, S., 2019: Laser powder bed fusion of lattice structures for thermome-
chanical applications. Ph.D. thesis, University of Nottingham, Nottingham, UK, URL
http://eprints.nottingham.ac.uk/60244.
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Garćıa-Dominguez, A., J. Claver, and M. A. Sebastián, 2020: Optimization methodology
for additive manufacturing of customized parts by fused deposition modeling (FDM).
application to a shoe heel. Polymers, 12 (9), 2119, doi:10.3390/polym12092119.

Gardan, Y., 2014: Mathematics and CAD: Numerical Methods for CAD. 1st ed., MIT
Press, Cambridge, MA, USA, 170 pp.

https://formlabs.com/3d-printers/form-2
https://formlabs.com/3d-printers/form-2
https://formlabs.com/software
https://formlabs-media.formlabs.com/datasheets/2001403-TDS-ENUS-0.pdf
https://formlabs-media.formlabs.com/datasheets/2001403-TDS-ENUS-0.pdf
https://formlabs-media.formlabs.com/datasheets/2001420-TDS-ENUS-0.pdf
https://formlabs-media.formlabs.com/datasheets/2001420-TDS-ENUS-0.pdf
https://doi.org/10.1007/978-3-319-72905-3_53
https://doi.org/10.17912/micropub.biology.000345
https://doi.org/10.1016/j.compstruct.2005.11.013
https://doi.org/10.1016/j.compmedimag.2009.07.002
https://doi.org/10.1016/S0009-2614(99)01000-3
https://doi.org/10.1016/S0009-2614(99)01000-3
https://doi.org/10.1016/j.compositesb.2022.110468
https://doi.org/10.3390/polym12092119


Bibliography 169
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Köhnen, P., C. Haase, J. Bültmann, S. Ziegler, J. H. Schleifenbaum, and W. Bleck,
2018: Mechanical properties and deformation behavior of additively manufac-
tured lattice structures of stainless steel. Materials & Design, 145, 205–217,
doi:10.1016/j.matdes.2018.02.062.

Koltunov, S. S., and M. N. Koroleva, 2021: Monitoring and decision support system for
traffic safety on bridges. CEUR Workshop Proceedings, Kolomna, Russia, 111–119, URL
https://ceur-ws.org/Vol-2965/paper13.pdf.

Kou, X., and S. T. Tan, 2007: Heterogeneous object modeling: A review. Computer-Aided
Design, 39 (4), 284–301, doi:10.1016/j.cad.2006.12.007.

Kucewicz, M., P. Baranowski, J. Ma lachowski, A. Pop lawski, and P. P latek, 2018: Mod-
elling, and characterization of 3D printed cellular structures. Materials & Design, 142,
177–189, doi:10.1016/j.matdes.2018.01.028.

Kurtz, A., 2009: Intra—lattice. URL http://www.intralattice.com, [Online; accessed March
14, 2023].

Laine, S., and T. Karras, 2010: Efficient sparse voxel octrees. Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games, 17 (8), 1051–4651,
doi:10.1109/TVCG.2010.240.

Leary, M., and Coauthors, 2018: Inconel 625 lattice structures manufactured by selective
laser melting (SLM): Mechanical properties, deformation and failure modes. Materials
& Design, 157, 179–199, doi:10.1016/j.matdes.2018.06.010.

Lee, S. H., and K. Lee, 2001: Partial entity structure: a compact non-manifold
boundary representation based on partial topological entities. Proceedings of the sixth
ACM symposium on Solid modeling and applications, Ann Arbor, MI, USA, 159–170,
doi:10.1145/376957.376976.

https://doi.org/10.1093/jcde/qwaa032
https://doi.org/10.4271/2013-01-9117
https://doi.org/10.3390/buildings13020366
https://doi.org/10.1016/j.matdes.2018.02.062
https://ceur-ws.org/Vol-2965/paper13.pdf
https://doi.org/10.1016/j.cad.2006.12.007
https://doi.org/10.1016/j.matdes.2018.01.028
http://www.intralattice.com
https://doi.org/10.1109/TVCG.2010.240
https://doi.org/10.1016/j.matdes.2018.06.010
https://doi.org/10.1145/376957.376976


Bibliography 174

Lenarduzzi, V., and D. Taibi, 2016: MVP explained: a systematic mapping study on
the definitions of minimal viable product. 2016 42th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), IEEE, Limassol, Cyprus, 112–119,
doi:10.1109/SEAA.2016.56.

Leonardi, F., S. Graziosi, R. Casati, F. Tamburrino, and M. Bordegoni, 2019: Additive
manufacturing of heterogeneous lattice structures: An experimental exploration. Pro-
ceedings of the Design Society: International Conference on Engineering Design, Delft,
Netherlands, Cambridge University Press, Vol. 1, 669–678, doi:10.1017/dsi.2019.71.

Lertthanasarn, J., C. Liu, and M.-S. Pham, 2021: Influence of the base material on the
mechanical behaviors of polycrystal-like meta-crystals. Journal of Micromechanics and
Molecular Physics, 2150004, doi:10.1142/S2424913021500041.

Letov, N., 2018: Integrating 3D solid modeling for conceptual concurrent design.
M.S. thesis, Skolkovo Institute of Science and Technology, 105 pp., Moscow, Rus-
sia, URL https://www.researchgate.net/publication/369190543 Integrating Concurrent
Conceptual Systems Design with 3D Modeling.

Letov, N., 2022: jalovisko/LatticeQuery: (0.1LQ). Zenodo, [Repository],
doi:10.5281/zenodo.6959068.

Letov, N., P. T. Velivela, S. Sun, and Y. F. Zhao, 2021: Challenges and opportunities in ge-
ometric modeling of complex bio-inspired three-dimensional objects designed for additive
manufacturing. Journal of Mechanical Design, 143 (12), 121 705, doi:10.1115/1.4051720.

Letov, N., and Y. F. Zhao, 2021: Volumetric cells: A framework for a bio-inspired geometric
modelling method to support heterogeneous lattice structures. Proceedings of the Design
Society: DESIGN Conference, Dubrovnik, Croatia, Cambridge University Press, Vol. 1,
295–304, doi:10.1017/dsd.2020.164.

Letov, N., and Y. F. Zhao, 2022: A geometric modelling framework to support the de-
sign of heterogeneous lattice structures with non-linearly varying geometry. Journal of
Computational Design and Engineering, 9 (5), 1565–1584, doi:10.1093/jcde/qwac076.

Letov, N., and Y. F. Zhao, 2023a: Beam-based lattice topology transition with function
representation. Journal of Mechanical Design, 145 (1), 011 704, doi:10.1115/1.4055950.

Letov, N., and Y. F. Zhao, 2023b: Geometric modelling of heterogeneous lattice structures
through function representation with LatticeQuery. Proceedings of the Design Society:
International Conference on Engineering Design (ICED23), Bordeaux, France, Cam-
bridge University Press, Vol. 3, 2045–2054, doi:10.1017/pds.2023.205.

https://doi.org/10.1109/SEAA.2016.56
https://doi.org/10.1017/dsi.2019.71
https://doi.org/10.1142/S2424913021500041
https://www.researchgate.net/publication/369190543_Integrating_Concurrent_Conceptual_Systems_Design_with_3D_Modeling
https://www.researchgate.net/publication/369190543_Integrating_Concurrent_Conceptual_Systems_Design_with_3D_Modeling
https://doi.org/10.5281/zenodo.6959068
https://doi.org/10.1115/1.4051720
https://doi.org/10.1017/dsd.2020.164
https://doi.org/10.1093/jcde/qwac076
https://doi.org/10.1115/1.4055950
https://doi.org/10.1017/pds.2023.205


Bibliography 175

Li, C., H. Lei, Z. Zhang, X. Zhang, H. Zhou, P. Wang, and D. Fang, 2020a: Architecture
design of periodic truss-lattice cells for additive manufacturing. Additive Manufacturing,
34, 101 172, doi:10.1016/j.addma.2020.101172.

Li, H., and Coauthors, 2022a: Assessing the effects of Kampo medicine on hu-
man skin texture and microcirculation. Artificial Life and Robotics, 27 (1), 64–69,
doi:10.1007/s10015-022-00736-z.

Li, J., Y. Liu, H. Ling, W. Guo, and G. He, 2011: Development of solid-based
modeling system for surface micromachined MEMS. 2011 3rd International Con-
ference on Computer Research and Development, IEEE, Shanghai, China, 297–301,
doi:10.1109/ICCRD.2011.5764136.

Li, L., C. Guo, Y. Chen, and Y. Chen, 2020b: Optimization design of lightweight struc-
ture inspired by glass sponges (porifera, hexacinellida) and its mechanical properties.
Bioinspiration & Biomimetics, 15 (3), 036 006, doi:10.1088/1748-3190/ab6ca9.

Li, S., H. Bai, R. F. Shepherd, and H. Zhao, 2019: Bio-inspired design and additive manu-
facturing of soft materials, machines, robots, and haptic interfaces. Angewandte Chemie
International Edition, 58 (33), 11 182–11 204, doi:10.1002/anie.201813402.

Li, W., W. Li, and Z. Yu, 2022b: Heat transfer enhancement of water-cooled triply pe-
riodic minimal surface heat exchangers. Applied Thermal Engineering, 217, 119 198,
doi:10.1016/j.applthermaleng.2022.119198.

Li, Y., and Coauthors, 2020c: A review on functionally graded materials and structures
via additive manufacturing: from multi-scale design to versatile functional properties.
Advanced Materials Technologies, 5 (6), 1900 981, doi:10.1002/admt.201900981.

Liu, C., Z. Du, W. Zhang, Y. Zhu, and X. Guo, 2017: Additive manufacturing-oriented
design of graded lattice structures through explicit topology optimization. Journal of
Applied Mechanics, 84 (8), doi:10.1115/1.4036941.

Liu, J., J. Yan, and H. Yu, 2021a: Stress-constrained topology optimization for material
extrusion polymer additive manufacturing. Journal of Computational Design and Engi-
neering, 8 (3), 979–993, doi:10.1093/jcde/qwab028.

Liu, J., and Coauthors, 2018: Current and future trends in topology optimization for
additive manufacturing. Structural and multidisciplinary optimization, 57, 2457–2483,
doi:10.1007/s00158-018-1994-3.

Liu, K., M. Cao, A. Fujishima, and L. Jiang, 2014: Bio-inspired titanium dioxide materials
with special wettability and their applications. Chemical reviews, 114 (19), 10 044–
10 094, doi:10.1021/cr4006796.

https://doi.org/10.1016/j.addma.2020.101172
https://doi.org/10.1007/s10015-022-00736-z
https://doi.org/10.1109/ICCRD.2011.5764136
https://doi.org/10.1088/1748-3190/ab6ca9
https://doi.org/10.1002/anie.201813402
https://doi.org/10.1016/j.applthermaleng.2022.119198
https://doi.org/10.1002/admt.201900981
https://doi.org/10.1115/1.4036941
https://doi.org/10.1093/jcde/qwab028
https://doi.org/10.1007/s00158-018-1994-3
https://doi.org/10.1021/cr4006796


Bibliography 176

Liu, P., Z. Kang, and Y. Luo, 2020a: Two-scale concurrent topology optimization of lat-
tice structures with connectable microstructures. Additive Manufacturing, 36, 101 427,
doi:10.1016/j.addma.2020.101427.

Liu, T., S. Guessasma, J. Zhu, and W. Zhang, 2019: Designing cellular structures for
additive manufacturing using Voronoi-Monte Carlo approach. Polymers, 11 (7), 1158,
doi:10.3390/polym11071158.

Liu, Y., H. Yang, Y. F. Zhao, and G. Zheng, 2022: A heterogeneous lattice structure
modeling technique supported by multiquadric radial basis function networks. Journal
of Computational Design and Engineering, 9 (1), 68–81, doi:10.1093/jcde/qwab069.

Liu, Y., G. Zheng, N. Letov, and Y. F. Zhao, 2021b: A survey of modeling and optimization
methods for multi-scale heterogeneous lattice structures. Journal of Mechanical Design,
143 (4), 040 803, doi:10.1115/1.4047917.

Liu, Y., S. Zhuo, Y. Xiao, G. Zheng, G. Dong, and Y. F. Zhao, 2020b: Rapid modeling and
design optimization of multi-topology lattice structure based on unit-cell library. Journal
of Mechanical Design, 142 (9), 091 705, doi:10.1115/1.4046812.

Loh, G. H., E. Pei, D. Harrison, and M. D. Monzón, 2018: An overview of
functionally graded additive manufacturing. Additive Manufacturing, 23, 34–44,
doi:10.1016/j.addma.2018.06.023.

Loh, Q. L., and C. Choong, 2013: Three-dimensional scaffolds for tissue engineering ap-
plications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19 (6),
485–502, doi:10.1089/ten.teb.2012.0437.

Loop, C. T., 1987: Smooth subdivision surfaces based on triangles. M.S. thesis, University
of Utah, 74 pp., Salt Lake City, UT, USA, URL https://charlesloop.com/thesis.pdf.

Lorensen, W. E., and H. E. Cline, 1987: Marching cubes: A high resolution 3D sur-
face construction algorithm. ACM SIGGRAPH Computer Graphics, 21 (4), 163–169,
doi:10.1145/37402.37422.

Lu, Y., L. Cheng, Z. Yang, J. Li, and H. Zhu, 2020: Relationship between the morphologi-
cal, mechanical and permeability properties of porous bone scaffolds and the underlying
microstructure. PloS one, 15 (9), e0238 471, doi:10.1371/journal.pone.0238471.

Luebke, D., M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner, 2003: Level
of detail for 3D graphics. 1st ed., Morgan Kaufmann, San Francisco, CA, USA, 416 pp.

Lutfi, M., 2018: The effect of gravitational field on brachistochrone problem. Journal
of Physics: Conference Series, IOP Publishing, Vol. 1028, 012060, doi:10.1088/1742-
6596/1028/1/012060.

https://doi.org/10.1016/j.addma.2020.101427
https://doi.org/10.3390/polym11071158
https://doi.org/10.1093/jcde/qwab069
https://doi.org/10.1115/1.4047917
https://doi.org/10.1115/1.4046812
https://doi.org/10.1016/j.addma.2018.06.023
https://doi.org/10.1089/ten.teb.2012.0437
https://charlesloop.com/thesis.pdf
https://doi.org/10.1145/37402.37422
https://doi.org/10.1371/journal.pone.0238471
https://doi.org/10.1088/1742-6596/1028/1/012060
https://doi.org/10.1088/1742-6596/1028/1/012060


Bibliography 177

Marcus, R. C., 2017: Level-of-detail independent voxel-based surface approximations. M.S.
thesis, Utrecht University, 49 pp., Utrecht, Netherlands, URL https://studenttheses.uu.
nl/handle/20.500.12932/25769.

Marshall, W. F., 2011: Origins of cellular geometry. BMC biology, 9, 1–9, doi:10.1186/1741-
7007-9-57.

Martin, W., E. Cohen, R. Fish, and P. Shirley, 2000: Practical ray trac-
ing of trimmed NURBS surfaces. Journal of Graphics Tools, 5 (1), 27–52,
doi:10.1080/10867651.2000.10487519.

Mart́ınez, J., J. Dumas, and S. Lefebvre, 2016: Procedural voronoi foams for
additive manufacturing. ACM Transactions on Graphics (TOG), 35 (4), 1–12,
doi:10.1145/2897824.2925922.

Maskery, I., A. Hussey, A. Panesar, A. Aremu, C. Tuck, I. Ashcroft, and R. Hague, 2017:
An investigation into reinforced and functionally graded lattice structures. Journal of
Cellular Plastics, 53 (2), 151–165, doi:10.1177/0021955X16639035.

Maskery, I., L. Parry, D. Padrão, R. Hague, and I. Ashcroft, 2022: FLatt Pack:
A research-focussed lattice design program. Additive Manufacturing, 49, 102 510,
doi:10.1016/j.addma.2021.102510.

Massarwi, F., P. Antolin, and G. Elber, 2019: Volumetric untrimming: Precise decomposi-
tion of trimmed trivariates into tensor products. Computer Aided Geometric Design, 71,
1–15, doi:10.1016/j.cagd.2019.04.005.

Massarwi, F., and G. Elber, 2016: A B-spline based framework for volumetric object
modeling. Computer-Aided Design, 78, 36–47, doi:10.1016/j.cad.2016.05.003.

Materialise NV., 2012: Materialise Mimics – 3D medical image processing software. URL
https://www.materialise.com/en/medical/mimics-innovation-suite/mimics, [Online; ac-
cessed March 15, 2023].

Mathur, A., M. Pirron, and D. Zufferey, 2020: Interactive programming for para-
metric CAD. Computer Graphics Forum, Wiley Online Library, Vol. 39, 408–425,
doi:10.1111/cgf.14046.

Matlack, K. H., A. Bauhofer, S. Krödel, A. Palermo, and C. Daraio, 2016: Com-
posite 3D-printed metastructures for low-frequency and broadband vibration ab-
sorption. Proceedings of the National Academy of Sciences, 113 (30), 8386–8390,
doi:10.1073/pnas.1600171113.

https://studenttheses.uu.nl/handle/20.500.12932/25769
https://studenttheses.uu.nl/handle/20.500.12932/25769
https://doi.org/10.1186/1741-7007-9-57
https://doi.org/10.1186/1741-7007-9-57
https://doi.org/10.1080/10867651.2000.10487519
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1177/0021955X16639035
https://doi.org/10.1016/j.addma.2021.102510
https://doi.org/10.1016/j.cagd.2019.04.005
https://doi.org/10.1016/j.cad.2016.05.003
https://www.materialise.com/en/medical/mimics-innovation-suite/mimics
https://doi.org/10.1111/cgf.14046
https://doi.org/10.1073/pnas.1600171113


Bibliography 178

McGregor, M., S. Patel, S. McLachlin, and M. Vlasea, 2021: Architectural bone parameters
and the relationship to titanium lattice design for powder bed fusion additive manufac-
turing. Additive Manufacturing, 47, 102 273, doi:10.1016/j.addma.2021.102273.

Mensch, T. E., E. A. Delesky, R. W. Learsch, K. E. Foster, S. K. Yeturu, W. V. Srubar,
and G. Miyake, 2021: Mechanical evaluation of 3D printed biomimetic non-Euclidean
saddle geometries mimicking the mantis shrimp. Bioinspiration & biomimetics, 16 (5),
056 002, doi:10.1088/1748-3190/ac0a33.

Menshenin, Y., D. Knoll, Y. Brovar, and C. Fortin, 2020: Analysis of MBSE/PLM integra-
tion: From conceptual design to detailed design. Product Lifecycle Management Enabling
Smart X: 17th IFIP WG 5.1 International Conference, PLM 2020, Rapperswil, Switzer-
land, Springer, Vol. 593, 593–603, doi:10.1007/978-3-030-62807-9 47.

Michielsen, K., and D. G. Stavenga, 2008: Gyroid cuticular structures in butterfly wing
scales: biological photonic crystals. Journal of The Royal Society Interface, 5 (18), 85–
94, doi:10.1098/rsif.2007.1065.

Milbradt, P., and T. Pick, 2008: Polytope finite elements. International Journal for Nu-
merical Methods in Engineering, 73 (12), 1811–1835, doi:10.1002/nme.2149.
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Schmidt, R., R. Wüchner, and K.-U. Bletzinger, 2012: Isogeometric analysis of trimmed
NURBS geometries. Computer Methods in Applied Mechanics and Engineering, 241,
93–111, doi:10.1016/j.cma.2012.05.021.

Schnitger Corporation, 2012: New Math. The Hidden Cost of Swapping
CAD Kernels. URL https://schnitgercorp.com/wp-content/uploads/2020/12/
SchnitgerCorp-Hidden-Cost-of-Kernel-Change-2020.pdf, [Online; accessed March
10, 2023], 11 pp.

Schnös, F., D. Hartmann, B. Obst, and G. Glashagen, 2021: GPU accelerated voxel-based
machining simulation. The International Journal of Advanced Manufacturing Technology,
115 (1-2), 275–289, doi:10.1007/s00170-021-07001-w.

Schulz, H., 2009: Polyhedral approximation and practical convex hull algorithm for
certain classes of voxel sets. Discrete applied mathematics, 157 (16), 3485–3493,
doi:10.1016/j.dam.2009.04.008.

Schumacher, C., B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, 2015: Mi-
crostructures to control elasticity in 3D printing. ACM Transactions on Graphics (Tog),
34 (4), 1–13, doi:10.1145/2766926.

Seemann, P., S. Fuhrmann, S. Guthe, F. Langguth, and M. Goesele, 2016: Simplification of
multi-scale geometry using adaptive curvature fields. arXiv preprint arXiv:1610.07368,
doi:10.48550/arXiv.1610.07368.

Shaikh, M., and T. Cornford, 2011: Total cost of ownership of open source software: a
report for the UK Cabinet Office supported by OpenForum Europe. Tech. rep., UK
Cabinet Office, London, UK. URL http://eprints.lse.ac.uk/39826/, accessed on 2023-04-
02.

Shapiro, V., 1994: Real functions for representation of rigid solids. Computer Aided Geo-
metric Design, 11 (2), 153–175, doi:10.1016/0167-8396(94)90030-2.

Shapiro, V., 2002: Solid Modeling, chap. 20, 473–518. 1st ed., Elsevier Science, Amsterdam,
The Netherlands, doi:10.1016/B978-044451104-1/50021-6.

Shapiro, V., 2007: Semi-analytic geometry with R-functions. ACTA numerica, 16, 239–303,
doi:10.1017/S096249290631001X.

Shi, J., L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, 2018: A TPMS-based method for
modeling porous scaffolds for bionic bone tissue engineering. Scientific reports, 8 (1),
7395, doi:10.1038/s41598-018-25750-9.

https://doi.org/10.1016/j.cma.2012.05.021
https://schnitgercorp.com/wp-content/uploads/2020/12/SchnitgerCorp-Hidden-Cost-of-Kernel-Change-2020.pdf
https://schnitgercorp.com/wp-content/uploads/2020/12/SchnitgerCorp-Hidden-Cost-of-Kernel-Change-2020.pdf
https://doi.org/10.1007/s00170-021-07001-w
https://doi.org/10.1016/j.dam.2009.04.008
https://doi.org/10.1145/2766926
https://doi.org/10.48550/arXiv.1610.07368
http://eprints.lse.ac.uk/39826/
https://doi.org/10.1016/0167-8396(94)90030-2
https://doi.org/10.1016/B978-044451104-1/50021-6
https://doi.org/10.1017/S096249290631001X
https://doi.org/10.1038/s41598-018-25750-9


Bibliography 184

Siemens Digital Industries Software, 2018: Parasolid. Siemens Software. URL https://www.
plm.automation.siemens.com/global/en/products/plm-components/parasolid.html,
[Online; accessed March 10, 2023].

Siemens Digital Industries Software, 2023a: NX software including CAD and CAM. URL
https://plm.sw.siemens.com/en-US/nx, [Online; accessed April 28, 2023].

Siemens Digital Industries Software, 2023b: Simcenter STAR-CCM+. URL https://plm.
sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm, [Online; accessed
April 28, 2023].

Sigmund, O., 1997: On the design of compliant mechanisms using topology optimization.
Journal of Structural Mechanics, 25 (4), 493–524, doi:10.1080/08905459708945415.

Soloveva, O. V., S. A. Solovev, A. R. Talipova, R. Z. Shakurova, and D. L. Paluku, 2022:
Study of heat transfer in models of FCC, BCC, SC and DEM porous structures with
different porosities. Journal of Physics: Conference Series, Saint Petersburg, Russia,
IOP Publishing, Vol. 2373, 022040, doi:10.1088/1742-6596/2373/2/022040.

Somnic, J., and B. W. Jo, 2022: Status and challenges in homogenization methods for
lattice materials. Materials, 15 (2), 605, doi:10.3390/ma15020605.

Song, Y., and E. Cohen, 2019: Refinement for a hybrid boundary representation and its
hybrid volume completion. The SMAI journal of computational mathematics, 5, 3–25,
doi:10.5802/smai-jcm.49.

Song, Y., Z. Dai, Z. Wang, A. Ji, and S. N. Gorb, 2016: The synergy between the insect-
inspired claws and adhesive pads increases the attachment ability on various rough sur-
faces. Scientific Reports, 6 (1), 26 219, doi:10.1038/srep26219.

Sourin, A., and A. Pasko, 1996: Function representation for sweeping by a moving
solid. IEEE Transactions on Visualization and Computer Graphics, 2 (1), 11–18,
doi:10.1109/2945.489382.

Stam, J., 1998: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary pa-
rameter values. Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, Orlando, FL, USA, 395–404, doi:10.1145/280814.280945.

Strand, R., 2004: Surface skeletons in grids with non-cubic voxels. Proceedings of the 17th
International Conference on Pattern Recognition, 2004. ICPR 2004., Cambridge, UK,
IEEE, Vol. 1, 548–551, doi:10.1109/ICPR.2004.1334195.

Stratakis, E., and Coauthors, 2020: Laser engineering of biomimetic surfaces. Materials
Science and Engineering: R: Reports, 141, 100 562, doi:10.1016/j.mser.2020.100562.

https://www.plm.automation.siemens.com/global/en/products/plm-components/parasolid.html
https://www.plm.automation.siemens.com/global/en/products/plm-components/parasolid.html
https://plm.sw.siemens.com/en-US/nx
https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm
https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1088/1742-6596/2373/2/022040
https://doi.org/10.3390/ma15020605
https://doi.org/10.5802/smai-jcm.49
https://doi.org/10.1038/srep26219
https://doi.org/10.1109/2945.489382
https://doi.org/10.1145/280814.280945
https://doi.org/10.1109/ICPR.2004.1334195
https://doi.org/10.1016/j.mser.2020.100562


Bibliography 185

Stroud, I., 2006: Boundary Representation Modelling Techniques. 1st ed., Springer London,
London, UK, 788 pp., doi:10.1007/978-1-84628-616-2.

Stroustrup, B., 1988: What is object-oriented programming? IEEE software, 5 (3), 10–20,
doi:10.1109/52.2020.

Tang, Y., G. Dong, and Y. F. Zhao, 2019: A hybrid geometric modeling method for lattice
structures fabricated by additive manufacturing. The International Journal of Advanced
Manufacturing Technology, 102, 4011–4030, doi:10.1007/s00170-019-03308-x.

Tang, Y., and Y. F. Zhao, 2016: A survey of the design methods for additive manufac-
turing to improve functional performance. Rapid Prototyping Journal, 22 (3), 569–590,
doi:10.1108/RPJ-01-2015-0011.

Taufik, M., and P. K. Jain, 2016: Additive manufacturing: Current scenario. Proceedings of
International Conference on: Advanced Production and Industrial Engineering-ICAPIE,
New Delhi, India, 380–386.

Telea, A., and A. Jalba, 2011: Voxel-based assessment of printability of 3D shapes. Math-
ematical Morphology and Its Applications to Image and Signal Processing: 10th Inter-
national Symposium, ISMM 2011. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, Verbania-Intra, Italy, Springer, Vol. 6671, 393–404, doi:10.1007/978-3-642-
21569-8 34.

Thane, J., 2007: Honeycomb. URL https://flic.kr/p/2UHtEd, [Online; accessed March 4,
2023].

The MathWorks, Inc., 2008: MATLAB – MathWorks – MATLAB and Simulink. URL
https://www.mathworks.com/products/matlab.html, [Online; accessed March 15, 2023].

Ultimaker BV., 2013: Ultimaker Cura: Powerful, easy-to-use 3D printing software. URL
https://ultimaker.com/software/ultimaker-cura, [Online; accessed March 17, 2023].

Urbanczyk, A., and Coauthors, 2021a: CadQuery/cadquery: CadQuery 2.1.
doi:10.5281/zenodo.4498634.

Urbanczyk, A., and Coauthors, 2021b: CadQuery/CQ-editor: 0.2.
doi:10.5281/zenodo.4532367.

Ushakov, D. M., 2018: Mathematics and CAD: Numerical Methods for CAD. DMK Press,
Moscow, Russia, 210 pp.

Vaxman, A., M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, and
M. Ben-Chen, 2016: Directional field synthesis, design, and processing. Computer graph-
ics forum, Wiley Online Library, Vol. 35, 545–572, doi:10.1111/cgf.12864.

https://doi.org/10.1007/978-1-84628-616-2
https://doi.org/10.1109/52.2020
https://doi.org/10.1007/s00170-019-03308-x
https://doi.org/10.1108/RPJ-01-2015-0011
https://doi.org/10.1007/978-3-642-21569-8_34
https://doi.org/10.1007/978-3-642-21569-8_34
https://flic.kr/p/2UHtEd
https://www.mathworks.com/products/matlab.html
https://ultimaker.com/software/ultimaker-cura
https://doi.org/10.5281/zenodo.4498634
https://doi.org/10.5281/zenodo.4532367
https://doi.org/10.1111/cgf.12864


Bibliography 186

Velivela, P. T., 2018: Masking materials and bio-inspired caps for chemical etching of
dental implants. M.S. thesis, Politecnico di Milano, 81 pp., Milano, Italy, URL http:
//hdl.handle.net/10589/143135.

Velivela, P. T., N. Letov, L. Kong, and Y. F. Zhao, 2023: A case study of multifunc-
tional non-pneumatic tire design for the validation of meta-level design parameter in Do-
main Integrated Design (DID) method. Proceedings of the Design Society: International
Conference on Engineering Design (ICED23), Bordeaux, France, Cambridge University
Press, Vol. 3, 39–48, doi:10.1017/pds.2023.5.

Velivela, P. T., N. Letov, Y. Liu, and Y. F. Zhao, 2021: Application of Domain Integrated
Design methodology for bio-inspired design-a case study of suture pin design. Proceedings
of the Design Society: DESIGN Conference, Dubrovnik, Croatia, Cambridge University
Press, Vol. 1, 487–496, doi:10.1017/pds.2021.49.

Virtanen, P., and Coauthors, 2020: SciPy 1.0: fundamental algorithms for scientific com-
puting in Python. Nature Methods, 17 (3), 261–272, doi:10.1038/s41592-019-0686-2.

Vyshnepolsky, V. I., A. V. Efremov, and E. V. Zavarikhina, 2022: Modeling and study
of properties of surfaces equidistant to a sphere and a plane. Journal of Physics: Con-
ference Series, Chengdu, China, IOP Publishing, Vol. 2182, 012012, doi:10.1088/1742-
6596/2182/1/012012.

Wang, H., Y. Chen, and D. W. Rosen, 2005: A hybrid geometric modeling method for large
scale conformal cellular structures. International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, Long Beach, CA,
USA, Vol. 47403, 421–427, doi:10.1115/DETC2005-85366.

Wang, L., and Coauthors, 2013: Biomechanism of impact resistance in the woodpecker’s
head and its application. Science China Life Sciences, 56, 715–719, doi:10.1007/s11427-
013-4523-z.

Wang, P., F. Casadei, S. H. Kang, and K. Bertoldi, 2015: Locally resonant band gaps
in periodic beam lattices by tuning connectivity. Physical Review B, 91 (2), 020 103,
doi:10.1103/PhysRevB.91.020103.

Wang, X., and X. Qian, 2014: An optimization approach for constructing trivariate B-spline
solids. Computer-Aided Design, 46, 179–191, doi:10.1016/j.cad.2013.08.030.

Wang, X., and Coauthors, 2016: Topological design and additive manufacturing of porous
metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141,
doi:10.1016/j.biomaterials.2016.01.012.

http://hdl.handle.net/10589/143135
http://hdl.handle.net/10589/143135
https://doi.org/10.1017/pds.2023.5
https://doi.org/10.1017/pds.2021.49
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1088/1742-6596/2182/1/012012
https://doi.org/10.1088/1742-6596/2182/1/012012
https://doi.org/10.1115/DETC2005-85366
https://doi.org/10.1007/s11427-013-4523-z
https://doi.org/10.1007/s11427-013-4523-z
https://doi.org/10.1103/PhysRevB.91.020103
https://doi.org/10.1016/j.cad.2013.08.030
https://doi.org/10.1016/j.biomaterials.2016.01.012


Bibliography 187

Wang, Z., and A. Y. Tamijani, 2022: Computational synthesis of large-scale three-
dimensional heterogeneous lattice structures. Aerospace Science and Technology, 120,
107 258, doi:10.1016/j.ast.2021.107258.

Wang, Z., Y. Zhang, and A. Bernard, 2021: A constructive solid geometry-based gener-
ative design method for additive manufacturing. Additive Manufacturing, 41, 101 952,
doi:10.1016/j.addma.2021.101952.

Warman, E., 1990: Object oriented programming and CAD. Journal of Engineering Design,
1 (1), 37–46, doi:10.1080/09544829008901641.

Warren, J., and H. Weimer, 2002: Subdivision methods for geometric design: A constructive
approach. 1st ed., Elsevier, Burlington, MA, USA, 320 pp., doi:10.1016/B978-1-55860-
446-9.X5000-5.

Wassermann, B., N. Korshunova, S. Kollmannsberger, E. Rank, and G. Elber, 2020: Finite
cell method for functionally graded materials based on V-models and homogenized mi-
crostructures. Advanced Modeling and Simulation in Engineering Sciences, 7 (1), 1–33,
doi:10.1186/s40323-020-00182-1.

Wei, N., H. Ye, X. Zhang, J. Li, and Y. Sui, 2022: Topology optimization for design of
hybrid lattice structures with multiple microstructure configurations. Acta Mechanica
Solida Sinica, 1–17, doi:10.1007/s10338-021-00302-3.

Weiler, M., R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl, 2000: Level-of-detail
volume rendering via 3D textures. Proceedings of the 2000 IEEE symposium on Volume
visualization, Salt Lake City, UTm USA, 7–13, doi:10.1145/353888.353889.

Weiskittel, A. R., J. A. Kershaw Jr, P. V. Hofmeyer, and R. S. Seymour, 2009: Species
differences in total and vertical distribution of branch-and tree-level leaf area for the
five primary conifer species in maine, usa. Forest Ecology and Management, 258 (7),
1695–1703, doi:10.1016/j.foreco.2009.07.035.

Wen, L., J. C. Weaver, and G. V. Lauder, 2014: Biomimetic shark skin: design, fabrication
and hydrodynamic function. Journal of Experimental Biology, 217 (10), 1656–1666,
doi:10.1242/jeb.097097.

Wohlers, T., and T. Gornet, 2014: History of additive manufacturing. Wohlers report,
24 (2016), 38.

Wong, K. V., and A. Hernandez, 2012: A review of additive manufacturing. International
scholarly research notices, 2012, 208 760, doi:10.5402/2012/208760.

https://doi.org/10.1016/j.ast.2021.107258
https://doi.org/10.1016/j.addma.2021.101952
https://doi.org/10.1080/09544829008901641
https://doi.org/10.1016/B978-1-55860-446-9.X5000-5
https://doi.org/10.1016/B978-1-55860-446-9.X5000-5
https://doi.org/10.1186/s40323-020-00182-1
https://doi.org/10.1007/s10338-021-00302-3
https://doi.org/10.1145/353888.353889
https://doi.org/10.1016/j.foreco.2009.07.035
https://doi.org/10.1242/jeb.097097
https://doi.org/10.5402/2012/208760


Bibliography 188

X. Gu, G., I. Su, S. Sharma, J. L. Voros, Z. Qin, and M. J. Buehler, 2016: Three-
dimensional-printing of bio-inspired composites. Journal of biomechanical engineering,
138 (2), 021 006, doi:10.1115/1.4032423.

Xu, L., Q. Ruan, Q. Shen, L. Xi, J. Gao, and Y. Li, 2021: Optimization design of lattice
structures in internal cooling channel with variable aspect ratio of gas turbine blade.
Energies, 14 (13), 3954, doi:10.3390/en14133954.

Xu, X., 2009: Integrating Advanced Computer-Aided Design, Manufacturing, and Numer-
ical Control: Principles and Implementations. IGI Global, 1–31 pp., doi:10.4018/978-1-
59904-714-0.

Yam, Y., M. L. Wong, and P. Baranyi, 2006: Interpolation with function space represen-
tation of membership functions. IEEE Transactions on Fuzzy Systems, 14 (3), 398–411,
doi:10.1109/TFUZZ.2006.876332.

Yang, N., Y. Song, J. Huang, Y. Chen, and I. Maskery, 2021: Combinational design of
heterogeneous lattices with hybrid region stiffness tuning for additive manufacturing.
Materials & Design, 209, 109 955, doi:10.1016/j.matdes.2021.109955.

Yang, N., Y. Tian, and D. Zhang, 2015a: Novel real function based method
to construct heterogeneous porous scaffolds and additive manufacturing for use
in medical engineering. Medical engineering & physics, 37 (11), 1037–1046,
doi:10.1016/j.medengphy.2015.08.006.

Yang, S., Y. Tang, and Y. F. Zhao, 2015b: A new part consolidation method to embrace
the design freedom of additive manufacturing. Journal of Manufacturing Processes, 20,
444–449, doi:10.1016/j.jmapro.2015.06.024.

Yang, S., and Y. F. Zhao, 2015: Additive manufacturing-enabled design theory and method-
ology: a critical review. The International Journal of Advanced Manufacturing Technol-
ogy, 80 (1-4), 327–342, doi:10.1007/s00170-015-6994-5.

Yang, X.-S., 2020: Nature-inspired optimization algorithms. 2nd ed., Academic Press, Lon-
don, UK, 310 pp., doi:10.1016/C2013-0-01368-0.

Yuan, G., and Y. Zhang, 2008: Development of 3D modeling platform based on Open
CASCADE. Journal of Engineering Graphics, 4.

Zhang, C., J. Liu, Z. Yuan, S. Xu, B. Zou, L. Li, and Y. Ma, 2021: A novel lattice structure
topology optimization method with extreme anisotropic lattice properties. Journal of
Computational Design and Engineering, 8 (5), 1367–1390, doi:10.1093/jcde/qwab051.

https://doi.org/10.1115/1.4032423
https://doi.org/10.3390/en14133954
https://doi.org/10.4018/978-1-59904-714-0
https://doi.org/10.4018/978-1-59904-714-0
https://doi.org/10.1109/TFUZZ.2006.876332
https://doi.org/10.1016/j.matdes.2021.109955
https://doi.org/10.1016/j.medengphy.2015.08.006
https://doi.org/10.1016/j.jmapro.2015.06.024
https://doi.org/10.1007/s00170-015-6994-5
https://doi.org/10.1016/C2013-0-01368-0
https://doi.org/10.1093/jcde/qwab051


Bibliography 189

Zhang, H., S. Tang, H. Yue, K. Wu, Y. Zhu, C. Liu, B. Liang, and C. Li, 2020: Comparison
of computational fluid dynamic simulation of a stirred tank with polyhedral and tetrahe-
dral meshes. Iranian Journal of Chemistry and Chemical Engineering, 39 (4), 311–319,
doi:10.30492/ijcce.2019.34950.

Zhang, W., S. Yin, T. Yu, and J. Xu, 2019: Crushing resistance and energy absorption of
pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineer-
ing, 125, 163–172, doi:10.1016/j.ijimpeng.2018.11.014.

Zhang, X., and F. Liou, 2021: Chapter 1 – Introduction to additive manufacturing. Additive
Manufacturing, J. Pou, A. Riveiro, and J. P. Davim, Eds., Handbooks in Advanced
Manufacturing, Elsevier, 1–31, doi:10.1016/B978-0-12-818411-0.00009-4.

Zhang, Y., and Y. F. Zhao, 2022: Hybrid sparse convolutional neural networks for predict-
ing manufacturability of visual defects of laser powder bed fusion processes. Journal of
Manufacturing Systems, 62, 835–845, doi:10.1016/j.jmsy.2021.07.002.

Zheng, A., S. Bian, E. Chaudhry, J. Chang, H. Haron, L. You, and J. J. Zhang,
2021: Voronoi diagram and Monte-Carlo simulation based finite element optimiza-
tion for cost-effective 3D printing. Journal of Computational Science, 50, 101 301,
doi:10.1016/j.jocs.2021.101301.

Zheng, Y., 2019: Bioinspired design of materials surfaces. Elsevier, Amsterdam, Nether-
lands, 27–97 pp., doi:10.1016/C2017-0-02152-3.

Zhong, Z., M. Rong, H. Lei, X. Chang, and L. Zhang, 2020: An efficient large-scale mesh de-
formation method based on MPI/OpenMP hybrid parallel radial basis function interpola-
tion. Chinese Journal of Aeronautics, 33 (5), 1392–1404, doi:10.1016/j.cja.2019.12.025.
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Appendix A

Case study of a bio-inspired

geometric modeling framework

Tiger got to hunt, bird got to fly;

Man got to sit and wonder ‘why, why, why?’

Tiger got to sleep, bird got to land;

Man got to tell himself he understand.

Kurt Vonnegut (1922 – 2007), Cat’s Cradle

Bio-inspired algorithms have garnered significant attention in recent years due to their

ability to mimic the efficient and adaptive processes found in nature (Bonabeau et al.,

1999; Dorigo et al., 2006). In geometric modeling, these algorithms offer a novel approach

to tackling complex problems, leveraging the inherent flexibility and robustness of biological

systems (Floreano and Mattiussi, 2023). The motivation behind using bio-inspired algo-

rithms in geometric modeling stems from the observation that natural systems often exhibit

optimal or near-optimal solutions to problems they encounter, such as growth, adaptation,

and structural organization (Benyus, 1997). This appendix is based on Letov and Zhao
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(2021), which introduces a 2D bio-inspired geometric modeling method. Additionally, this

appendix scales this method to 3D and provides a performance comparison of the method.

The importance of using bio-inspired algorithms in geometric modeling lies in their

potential to address the limitations of traditional methods. Conventional modeling tech-

niques may struggle to cope with the increasing complexity and scale of modern geometric

problems, often requiring significant computational resources and time (Edgar and Tint,

2015). On the other hand, bio-inspired algorithms can offer more efficient and adaptive

solutions, taking advantage of the self-organizing and problem-solving capabilities observed

in nature (Yang, 2020).

To evaluate the benefits and drawbacks of bio-inspired geometric modeling, one should

examine an example of bio-inspired meshing (Letov and Zhao, 2021). Suppose there is a

set S that represents the geometric model of a structure, which can be mapped to a set of

unit elements comprising it, or

S(p) 7→ v1, ..., vn =
n⋃

i=1

vi, (A.1)

where p is a vector of lattice properties (e.g., topology type or material), and vi for i =

1, ..., n is a set of unit elements corresponding to the geometric model S. These unit elements

are called volumetric cells and are depicted in Fig. A.1. S is a 3D shape that is bounded by

a finite genus g orientable 2-manifold M2
g , which is not necessarily convex. According to the

complex cell theory, each volumetric cell is defined as a compact 3-manifold M3
0 of genus

g = 0. Thus, S can be described as a 3D quotient space resulting from the quotient map

attaching volumetric cells vi by their boundaries ∂vji , where ∂vji denotes the j-th boundary
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of the i-th volumetric cell. Mathematically, this can be expressed as:

S :=
n⋃

i=1

(
vi/

m⋃
j=1

∂vji

)
⊂ R3. (A.2)

Figure A.1 Representation of the geometrical model S

This framework is similar to other geometric modeling methods involving volumetric

data discretization but with redefined constraints. Firstly, unlike voxels, volumetric cells

vi in this framework can vary in shape and size. Secondly, volumetric cells vi are not

necessarily convex, unlike volumetric mesh.

In this case study, two bio-inspired algorithms are presented and combined into a single

algorithm.

A prevalent pattern in cell geometry formation is the long axis rule (LAR), as illustrated
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in Fig. A.2. LAR specifies the cleavage plane as perpendicular to the longest axis, passing

through the center of mass(Minc et al., 2011).

Figure A.2 The long axis rule observed in cell division process of the em-
bryos of sea urchin (Echinoidea) (Minc et al., 2011)

In this case study, a geometric modeling approach that uses LAR as its discretization

technique base is described as follows:

1. Let ∂S be the boundary of a structure S. Set k = 1. Set kmax to be the maximum

number of iterations. Let vk1 be a volume cell that fills the space bounded by ∂S.

2. Divide each volumetric cell vkl into two volumetric cells vk+1
2l−1 and vk+1

2l by LAR as

follows:

(a) For each vkl identify its centroid c(X) =
∫
XF (X)dX∫
F (X)dX

for all X = (x1, x2, x3) ⊂ R3

such that F (X) ≥ 0.

(b) Identify the long axis L.

(c) Identify the plane σ perpendicular to the long axis L.
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(d) Divide V k
l into two volumetric cells vk+1

2l−1 and vk+1
2l by the plane σ such that

vk+1
2l−1 ∩ vk+1

2l = σ and vk+1
2l−1 ∪ vk+1

2l = vkl .

3. Set k ← k + 1. If k < kmax go to Step 2.

4. STOP.

Note that instead of the center of mass of a volumetric cell, its centroid is used, which

is due to the fact that the material of the structure is omitted. Only geometric properties

are taken into account. Note that LAR is not always followed in nature, as seen in the

bottom row of Fig. A.2.

It has been observed in nature that cells tend to minimize their surface-to-volume ratio

(SVR) (Schmick and Bastiaens, 2014) The 3D shape with the most optimal SVR in this

sense is a sphere which also explains the blob-like shape of most cells. Sometimes, external

geometrical constraints do not allow sphericity (Marshall, 2011). The external geometrical

constraints result from the physical and environmental ones. In this case study, a geometric

modeling approach that takes the S/V ratio as a base for its discretization technique is

described as follows:

1. Define ∂S to be the boundary of a structure S. Set k = 1. Set kmax to be the

maximum number of iterations. Let vk1 be a single volume cell that fills the space

bounded by ∂S.

2. Define the volumetric cells vk+1
2l−1 and vk+1

2l by minimizing S/V as follows:

(a) For vk+1
2l−1 and vk+1

2l define their S/V functions as RS/V 1(X) = S1(X)/V2(X) and

RS/V 2(X) = S2(X)/V2(X), respectively, where S1 and S2 are surfaces and V1 and

V2 are volumes of vk+1
2l−1 and vk+1

2l , respectively, both depending on cell division.
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(b) Find the optimal division surface D(X̂) where X̂ = arg minX

(
RS/V 1(X) + RS/V 2(X)

)
and set vk+1

2l−1 and vk+1
2l such that vk+1

2l−1 ∩ vk+1
2l = D(X̂) and vk+1

2l−1 ∪ vk+1
2l = vkl .

Note that D(X̂) is not necessarily plane.

3. Set k ← k + 1. If k < kmax go to Step 2.

4. STOP.

Note that the minimization of RS/V 1(X) and RS/V 2(X) separately results in contradic-

tion as minxRS/V 1(X) and minXRS/V 2(X) produce values of X̂ such that either vk+1
2l−1 = V k

l

or vk+1
2l = V k

l while the minimization of
(
RS/V 1(X) + RS/V 2(X)

)
is performed in a balanced

way with no contradiction of values of X̂.

In nature, there is no single algorithm that defines cell geometry. This case study ana-

lyzes a combined approach illustrated in Fig. A.3. The trade-off between the two algorithms

is performed manually. The method is considered to be defined for each iteration of the

division. Note that the LOD concept can be applied to the result of the combined approach

by combining neighboring vertices of two adjacent volumetric cells and thus providing a

modified version of the approach.

Figure A.3 The flowchart of the combined bio-inspired algorithm for geo-
metric modeling (Letov and Zhao, 2021)

Two use cases are considered to verify the validity of the approach. For verification of the

LAR method, a circular cross-section in Fig. A.4a and a square cross-section with a hole in

the middle in Fig. A.5b are discretized into volumetric cells. The hole in the middle is added
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as it is vital to consider a simple shape with a non-zero genus, as cellular structures have a

high genus. Every resulting cell is convex at every iteration of the algorithm. A volumetric

cell is divided into two by a plane. Moreover, LAR has a high level of inconsistency between

each volumetric cell, and the variety of shapes is large.

Figure A.4 (a) LAR, (b) the S/V ratio minimization, (c) the combined
method, and (d) the modified combined algorithms applied as discretization
methods to a circular cross-section for kmax = 4 iterations. Long axes are
shown as dotted lines (Letov and Zhao, 2021).

The verification of the S/V ratio method is performed similarly and shown in Fig. A.4b

and Fig. A.5b. Consider the first iteration (k = 1) applied to the circular cross-section
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Figure A.5 (a) LAR, (b) the S/V ratio minimization, (c) the combined
method, and (d) the modified combined algorithms applied as discretization
methods to a square cross-section with a circular hole in its middle for kmax = 4
iterations. Long axes are shown as dotted lines (Letov and Zhao, 2021).

with the set of S/V functions defined as

RS/V 1 =
2

r
and RS/V 2 =

2R + 2r

R2 − r2
for r ∈ [0, R]. (A.3)

Note that arg minr RS/V 1 = R and arg minr RS/V 2 = 0. This result indicates that two

optimized values of r contradict, while r̂ = arg minr

(
RS/V 1 + RS/V 2

)
= R/2 produces the

first optimal division surface D(r̂). However, the resulting volumetric cells do not fit the

framework as they correspond to 2-manifolds of genus higher than 0.
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In this case study, both the LAR and S/V ratio methods are combined manually and

verified for kmax = 4 with k = {1, 3} corresponding to the LAR method and k = {2, 4}

corresponding to the S/V ratio method. The results are shown in Fig. A.4c and Fig. A.5c.

Compared to volumetric mesh, volumetric cells obtained with this method are not neces-

sarily convex. Volumetric cells discretize the model with similar unit cells but with different

sizes compared to voxelized models. However, the inconsistency between volumetric cells

remains from the LAR method. This method is modified according to the LOD concept

by combining neighboring vertices of several pairs of adjacent volumetric cells as seen in

Fig. A.4d and Fig. A.5d. This method provides a result similar to the unit cells used for

stress analysis of cylindrical structures. The obtained unit cells appear similar to the results

obtained by the iterative application of the signed distance function (Katopodes, 2018).

Figure A.6 A heterogeneous lattice structure with the graded beam thick-
ness modeled with volumetric cells

Figure A.6 illustrates the implementation of the bio-inspired volumetric cells framework

to a 3D case study of a heterogeneous lattice with a simple cubic topology. This imple-

mentation is achieved with the IRIT modeling environment introduced in Section 2.1.2.

Table A.1 provides performance metrics of this approach. The modeling was performed on

a machine equipped with the Nvidia RTX 2080 Ti GPU, the Intel Xeon Gold 6234 CPU, 64
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Table A.1 Performance metrics comparing the voxel, Rhinoceros 3D, and
volumetric cell models.

RAM load CPU load GPU load Size

Voxel model 2534 MB 19% 30% 125 MB

Rhinoceros 3D 911 MB 11% 16% 131 MB

Volumetric cells 913 MB 17% 27% 29 MB

GB of RAM, an SSD, and running the Manjaro Linux operating system (OS). Nevertheless,

the further advancement of the bio-inspired modeling approach requires the development

of a specialized GMK, which forms a whole separate direction of research.
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